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Abstract

High dimensional nonstationary time series have been increasingly utilized for macroe-
conomic prediction, and the degrees of persistence usually vary among predictors. This
paper devises a LASSO-based inference for high dimensional predictive regression with
a wide class of persistent regressors, where the dimension of parameters of interest is
allowed to exceed the sample size. We first establish the consistency of LASSO under
mixed roots based on a new restricted eigenvalue condition of the Gram matrix. By
virtue of bias-corrected LASSO estimators with the IVX instrumentation, we develop
an IVX-desparsified-maximum (XDM) test that is robust to mixed degrees of persis-
tence. Leveraging a Gaussian coupling result of martingales, we show that the XDM
test asymptotically achieves the predetermined size and enjoys high power in detecting
sparse alternatives. We apply the XDM test to validate the predictability of U.S. infla-
tion with high dimensional macroeconomic data.
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“... the ongoing interest in econometrics in uniform procedures of inference, the challenges
presented by multiple predictors, and the pitfalls pointed out in the current contribution,
there is substantial need for continuing econometric research on methods of inference that
can cope with potential nonstationarities in many regressors, control size, and deliver good
discriminatory power in detecting predictability. ”

— Phillips, Peter C. B. "On confidence intervals for autoregressive roots and predictive
regression." Econometrica 82.3 (2014): 1177-1195.

1 Introduction

The unprecedented burgeon of machine learning has reformed economic and financial studies
in the modern big data era. Economists benefit from far-reaching toolkits to cope with
high dimensional data, with LASSO (Tibshirani, 1996) being one of the most commonly
used approaches. Machine learning extensively impacts multiple research topics of economic
and financial prediction with high dimensional data, including macroeconomic forecasting
(Smeekes and Wijler, 2018; Giannone et al., 2021; Medeiros et al., 2021; Babii et al., 2022;
Goulet Coulombe et al., 2022), and empirical asset pricing (Feng et al., 2020; Gu et al., 2020).

Machine learning theory in regression models has been springing up for independently and
identically distributed (i.i.d.) and weakly dependent data, where the number of regressors
(p) is allowed to be larger than the sample size (n). Nevertheless, these theoretical results
are inapplicable for highly persistent time series in macroeconomic and financial prediction.
Persistent time series, though common in empirical applications, possess peculiar asymptotic
properties that substantially complicate estimation and inference. The complexity is further
entangled when the persistent time series are of high dimension.

This paper makes advancement in the linear predictive regression model

yt =

p∑
j=1

xj,t−1β
∗
j + ut, t = 1, 2, . . . , n (1)

under the p≫ n regime. The regressors modeled as the autoregression of order one (AR(1)),
given by xj,t = ρ∗jxj,t−1 + ej,t, are allowed to be highly persistent. Our contributions are
twofold: (i) taking mixed root regressors into account, and (ii) developing a procedure of
simultaneous inference for any subset of coefficients where high dimensionality is allowed.
To the best of our knowledge, this paper is the first to address these two issues when p≫ n.

Recent literature has witnessed theoretical progresses for the model (1) when persistent
regressors are exact unit roots with the AR coefficient ρ∗j = 1. In this framework, Mei and
Shi (2024, MS hereafter) established the consistency of standardized LASSO (Slasso) where
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the regressors are normalized by their sample standard deviations (s.d.). Built upon the
consistency of Slasso, Gao et al. (2024, GLMS hereafter) developed a tool of hypothesis
testing called IVX-Desparsified LASSO (XDlasso) for a scalar coefficient of interest.

These important progresses are still insufficient to cover the practical applications. First,
the unit root is not adequate to model nonstationary time series in the real world, since
the persistence is usually heterogeneous among variables. The popular FRED-MD database
(McCracken and Ng, 2016) of U.S. macroeconomic time series offers a typical example. Figure
1 plots representative variables from the FRED-MD database. The patterns of trends in these
time series are visibly distinctive. We therefore generalize the previous unit roots by allowing
ρ∗j in the AR(1) process xj,t = ρ∗jxj,t−1 + ej,t to be close but not exactly equal to one, and
heterogeneous among all j. This setup, called the mixed root in the literature (Phillips and
Lee, 2016; Lee et al., 2022), consolidates the theory and broadens the applicability of LASSO
and its variants.

Second, researchers are often interested in inference for multiple regressors with the joint
null hypothesis

H0 : β
∗
j = β0,j for all j ∈ I (2)

where I is an arbitrary subset of {1, 2, . . . , p} and allowed to be large. The global null hy-
pothesis H0 : β

∗
j = 0 for all j = 1, 2, . . . , p is commonly used to test the predictability of the

outcome yt by all observed predictors. Simultaneous inference for a subset of coefficients is
also empirically oriented, allowing us to simultaneously test the predictability of a category of
predictors. For instance, on account of the background of the Phillips Curve (Phillips, 1958),
the predictability of inflation by unemployment rate is one of the central topics in macroeco-
nomics (Stock and Watson, 1999; Groen et al., 2013). Nevertheless, the unemployment rate
is just one measurement of the labor market, and FRED-MD includes other indicators. The
simultaneous test provides a tool to infer if any of the high dimensional indicators of labor
market has predictive power for inflation, which complements the classical wisdom. The
simultaneous inference enables us to test the significance of predictive power for any subset
of regressors, thereby enriching the empirical studies with high dimensional regressors from
a multitude of perspectives. See Section 5 for illustrative examples.

To achieve the aforementioned two goals, we first establish the consistency of Slasso for
mixed root regressors. The main challenges fall into the restricted eigenvalue (RE) condition
for the Gram matrix of mixed roots, which is a pivotal property that commands LASSO’s
behavior (Bickel et al., 2009). When the AR(1) coefficient ρ∗j converges to one as n→ ∞, the
regressor xj,t is not strongly mixing and therefore the concentration inequalities for weakly
dependent time series (Merlevède et al., 2011) do not apply. In particular, when xj,t is
local unit root with ρ∗j = 1 + O(n−1), the sample s.d. of xj,t converges in distribution to
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a peculiar random variable. Therefore, the Gram matrix does not concentrate around any
deterministic matrix. The local unit root is more involved than the pure unit root with
ρ∗j = 1 considered in MS and GLMS, where xj,t has a partial sum representation

∑
s≤t ej,s

that simplifies theoretical derivations. We tackle the complexity of mixed roots and deduce
the RE condition, yielding novel LASSO convergence rates distinguished from the previous
works.

For simultaneous inference in high dimensional linear models, the off-the-shelf method
is the maximum test by Zhang and Cheng (2017). It consists of the desparsified LASSO
(Dlasso) that removes the shrinkage bias from LASSO penalty (Zhang and Zhang, 2014), and
the multiplier bootstrap founded on Gaussian coupling theory (Chernozhukov et al., 2013;
Chang et al., 2024). The theoretical foundation of Dlasso is ruined by persistent regressors,
as the famous Stambaugh bias (Stambaugh, 1999) deviates the asymptotic distribution from
normality. We thus propose a two-step testing procedure, named as the IVX-desparsified-
maximum (XDM) test for the null hypothesis (2). First, we construct XDlasso estimators
by GMLS for each coefficient of interest. The XDlasso by GLMS fuses the wisdom of the
desparsified LASSO (Zhang and Zhang, 2014, Dlasso) that removes the shrinkage bias from
LASSO penalty, and IVX (Phillips and Magdalinos, 2009) that removes the Stambaugh bias
caused by high persistence. Second, we reject the null hypothesis if the maximum absolute
value of the XDlasso t-statistics exceeds a critical value from the multiplier bootstrap.

Our XDM test is not a stack of ready-made components. Instead, it depends on a deep
understanding of the asymptotic properties of persistent regressors, and the reconstruction of
the theoretical foundation for XDlasso in the new scenario of high dimensional mixed roots.
Persistent regressors invalidate Gaussian coupling theories designated for cross-sectional and
weakly dependent data. Adopting the Gaussian approximation theory for martingales by Hall
and Heyde (1980) and Belloni and Oliveira (2018), we exploit a high dimensional central limit
theorem for XDlasso when the regressors violate the common assumption of weak dependence.
We further show that the XDM test enjoys a correct asymptotic size and good discriminatory
power in sparse alternatives. Similar to the classical IVX in low dimensions, the XDM test
can detect local alternatives of order 1/

√
n for stationary regressors, and higher orders for

persistent regressors.
We apply our XDM test to the FRED-MD database to infer the predictability of inflation

using high dimensional macroeconomic time series. We discover that time series of output
and income, labor market, money and credit, interest rate and exchange rate, prices, and
stock market have significant predictive power for future inflation. The predictive power is
more significant after the global financial crisis starting in late 2007. We further point out
that the predictive power is strengthened by the inclusion of further lags of the predictors.
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Literature review. Our work contributes to the literature of predictive regression.
Non-standard asymptotic distribution caused by persistent regressors disables standard in-
ference (Campbell and Yogo, 2006; Jansson and Moreira, 2006). Multiple solutions have been
proposed for valid inference; see GLMS for a more comprehensive literature review. Phillips
and Magdalinos (2009)’s IVX estimator enjoys the asymptotic normal distribution, enabling
valid inference with a standard t-statistic for time series mean regressions (Kostakis et al.,
2015, 2018; Phillips and Lee, 2013, 2016; Yang et al., 2020; Demetrescu et al., 2023), quan-
tile regressions (Lee, 2016; Fan and Lee, 2019; Cai et al., 2023; Liu et al., 2023), and panel
predictive regressions (Liao et al., 2024). The predictive regression also links to the recently
intensive development of local projection in dynamic models (Jordà, 2005; Montiel Olea and
Plagborg-Møller, 2021; Plagborg-Møller and Wolf, 2021; Mei et al., 2023; Li et al., 2024),
with a main focus on weakly dependent data and low dimensions.

As Phillips (2014) pointed out in the Conclusion, econometric analysis of predictive re-
gressions is challenging under multiple predictors, which is further complicated by the modern
data-rich environment. A strand of recent works (Koo et al., 2020; Smeekes and Wijler, 2021;
Phillips and Kheifets, 2024) has studied predictive regressions when the number of persistent
regressors is allowed to grow with but far less than the sample size. Other papers discussed
unit root test (Zhang et al., 2018), cointegration test (Onatski and Wang, 2018; Zhang et al.,
2019; Bykhovskaya and Gorin, 2022, 2024), and factor analysis (Onatski and Wang, 2021),
were also focused on the p≪ n regime. After MS and GLMS, our paper is another stepping
stone to understand predictive regressions with high dimensional nonstationary time series
under p≫ n.

Inference by desparsified LASSO, since its inception a decade ago (Javanmard and Mon-
tanari, 2014; van de Geer et al., 2014; Zhang and Zhang, 2014), has been widely used in high
dimensional models. Its popularity recently spreads to various econometric topics, including
cross-sectional data (Gold et al., 2020; Fan et al., 2023, 2024) and time series regression
(Chernozhukov et al., 2021; Adamek et al., 2023; Babii et al., 2024). Other machine learn-
ing techniques have been also used in various topics of time series, including cycle-trend
decomposition (Phillips and Shi, 2021; Mei et al., 2024), cointegration (Lee et al., 2022),
structural changes (Tu and Xie, 2023), and time-varying models (Yousuf and Ng, 2021). Re-
cent advancements in machine learning have also witnessed applications in multiple topics of
econometrics, such as instrumental variables (Belloni et al., 2012, 2014, 2022; Fan and Liao,
2014), moment equalities (Newey and Windmeijer, 2009; Cheng and Liao, 2015; Shi, 2016;
Chang et al., 2018, 2021), to name a few.

Layout. The remainder of this paper is organized as follows. Section 2 instructs the high
dimensional predictive regression with mixed root regressors, and establishes the consistency
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of Slasso. Section 3 proposes the XDM test and justifies its asymptotic size and power
properties. Section 4 includes the Monte Carlo simulations to demonstrate the empirical size
and power of the XDM test. Section 5 applies XDM to test predictability of the U.S. inflation.
Section 6 concludes the paper. Technical proofs are neglected to Online Appendices.

Notations. We set up the notations before formal discussions. We define 1 {·} as the
indicator function, and ∆ as the difference operator so that ∆xt = xt−xt−1. The set of natural
numbers, integers, and real numbers are denoted as N, Z, and R, respectively. For some n ∈
N, the integer set {1, 2, · · · , n} is denoted as [n], and the space of n-dimensional real-number
vectors is denoted as Rn. For x = (xt)t∈[n] ∈ Rn, the L0-norm is ∥x∥0 =

∑n
t=1 1 {xt ̸= 0},

the L2-norm is ∥x∥2 =
√∑n

t=1 x
2
t , the L1-norm is ∥x∥1 =

∑n
t=1 |xt|, and the sup-norm is

∥x∥∞ = supt∈[n] |xt|. Let 0n be an n × 1 zero vector, and 1n be an n × 1 vector of ones.
For a generic matrix B, let Bij be the (i, j)-th element, and B⊤ be its transpose. Let
∥B∥∞ = maxi,j |Bij|, and λmin(B) and λmax(B) be the minimum and maximum eigenvalues,
respectively. Define a ∧ b := min {a, b}, and a ∨ b := max {a, b}. An absolute constant is a
positive, finite constant that is invariant with the sample size. The abbreviation “w.p.a.1”
is short for “with probability approaching one”. We use p→ and d→ to denote convergence
in probability and in distribution, respectively. For any time series {at}nt=1, we use ā to
denote its sample mean n−1

∑n
t=1 at. For any time series {at} and {bt}, we say they are

asymptotically uncorrelated if their sample correlation coefficient
∑n

t=1(at−ā)(bt−b̄)√∑n
t=1(at−ā)2

∑n
t=1(bt−b̄)2

p→ 0

as n→ ∞. Finally, we use “A⊗B” to denote the Kronecker product of matrices A and B.

2 LASSO for High Dimensional Mixed Roots

2.1 Predictive Regression

The linear predictive regression (1) can be written as the following form:

yt = x⊤t−1β
∗ + ut, t = 1, 2, . . . , n, (3)

where xt = (x1,t, . . . , xp,t)
⊤ is a p-dimensional vector of regressors, and ut is a stationary error

term.1 We formally set up the AR(1) model for the regressors as

xj,t = ρ∗jxj,t−1 + ej,t, ρ
∗
j = 1 +

c∗j
nγj

(4)

1We omit the intercept for simplicity of exposition. As MS pointed out, in LASSO the intercept can be
handled by the well-known Frisch-Waugh-Lovell theorem.
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for j = 1, 2, . . . , p, where ej,t is a stationary innovation. For simplicity, let the initial value
∥xt=0∥∞ = Op(1). We allow for serial correlation in the weakly dependent ej,t, thereby ac-
commodating misspecification of the AR process (4).

The AR(1) coefficient ρ∗j measures the persistence of xj,t, determined by the sample size
n, the real number c∗j , and the indicator γj = 0 or 1. In particular, the absolute constant γj
determines the stochastic order and asymptotic distribution of xj,t. We call γj the degree of
persistence of xj,t. Our general framework allows for a wide range of persistence, capturing
the heterogeneous dynamic patterns of high dimensional macroeconomic data. The following
categories of regressors are considered:

(a) Stationary (ST): γj = 0 and −2 + ϵ < c∗j < −ϵ for some fixed small constant ϵ ∈ (0, 1).

(b) Locally integrated (LI): γj = 1 and c∗j < 0.

(c) Unit root (UR): γj = 1 and c∗j = 0.

(d) Locally explosive (LE): γj = 1 and c∗j > 0.

The latter three cases share similarities in asymptotic properties and thus can be unified
into the same category, called local unit root (LUR). The LUR setup subsumes persistent
regressors in reality with ρ∗j close but not exactly equal to one.

Let G(1) = {j ∈ [p] : γj = 1} collect the integers that index the locations of LUR
regressors, and G(0) = {j ∈ [p] : γj = 0} include the indexes for stationary regressors. Define
the size of each group as p1 = |G(1)| and p0 = |G(0)|. Without loss of generality, suppose that
G(1) = {1, 2, . . . , p1} and G(0) = {p1 + 1, p1 + 2, . . . , p}. For k = 0, 1, let β(k)∗ = (β∗

j )j∈G(k) ,
x
(k)
t = (xj,t)j∈G(k) , and e

(k)
t = (ej,t)j∈G(k) denote the subvectors of coefficients and time series

indexed by G(k). Further define the diagonal matrix C(k) = diag({c∗j}j∈G(k)). Then the data
generating processes (3) and (4) can be written as

yt = x
(0)⊤
t−1 β

(0)∗ + x
(1)⊤
t−1 β

(1)∗ + ut, (5)

x
(k)
t =

(
Ipk +

C(k)

nk

)
x
(k)
t−1 + e

(k)
t−1, k = 0, 1. (6)

The index s = ∥β∗∥0 characterizes the sparsity of the model. Throughout this paper, we take
the number of regressors p = p (n) and the sparsity index s = s (n) as deterministic functions
of the sample size n. In formal asymptotic statements, we explicitly send the sample size n
to infinity, and always assume p(n) → ∞ with n → ∞ while s (n) is allowed to be either
fixed or divergent.
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2.2 Slasso

Define the sample standard deviations (s.d.) of the regressors as

σ̂j =

√√√√ 1

n

n∑
t=1

(xj,t−1 − x̄j)2.

We consider the standardized LASSO (Slasso) estimator

β̂S = arg min
β∈Rp

{
n−1

n∑
t=1

(yt − x⊤t−1β)
2 + λ∥Dβ∥1

}
. (7)

where the diagonal matrix D = diag (σ̂1, σ̂2, . . . , σ̂p) stores the sample s.d. of the variables.
Slasso is scale-invariant in the sense that if the regressor xj,t is multiplied by a nonzero
constant m, the estimator changes proportionally into β̂S

j /m. The magnitude of mixed root
regressors vary among different degrees of persistence. The standardization renders the scales
of all regressors into the same stochastic order of Op(1), for which the same tuning param-
eter λ is valid for all regressors with various degrees of persistence. In contrast, the plain
LASSO (Plasso) with the matrix D in (7) replaced by the identity matrix is expected to be
inconsistent. Plasso favors the LUR regressors of a larger order, and shrinks the coefficients
of stationary regressors with a smaller order all the way to zero.

The consistency of Slasso is founded on two building blocks. The first one, which is essen-
tial and challenging, is the RE condition of the Gram matrix of the standardized regressors.
For any L > 1, the restricted eigenvalue of any p× p matrix Σ is defined as

κH(Σ, L, s) := inf
δ∈R(L,s)

δ⊤H−1ΣH−1δ

δ⊤δ
, (8)

where R(L, s) = {δ ∈ Rp\{0p} : ∥δMc∥1 ≤ L∥δM∥1, for all |M| ≤ s}. The generic matrix
H is a placeholder and varies in different contexts. Let Σ̂ =

∑n
t=1 xt−1x

⊤
t−1/n be the sample

Gram matrix of all regressors. In the context of Slasso, we consider Σ = Σ̂ and H = D

along with the scale standardization in (7). The choice of the constant L is related to the
procedures of technical proofs and does not impact the rate of convergence. Following the
common practice (Bickel et al., 2009; Mei and Shi, 2024), we set L = 3 as a convenient choice,
and simplify the notation as κ̂D = κD(Σ̂, 3, s). The quantity κ̂D appears at the denominator
of Slasso’s convergence rates, according to Lemma 1 in MS. Therefore, a rate that bounds
κ̂D away from zero is essential for the consistency of Slasso.

The second condition for Slasso’s consistency is the deviation bound (DB) of the cross-
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product between the error term ut in (3) and the standardized regressors. The theoretical
order of the tuning parameter λ must be no smaller than that of ∥n−1

∑n
t=1D

−1xt−1ut∥∞ to
avoid overfitting. On the other hand, an excessively large λ causes over shrinkage and dam-
ages consistency. A tight upper bound of ∥n−1

∑n
t=1D

−1xt−1ut∥∞ is therefore indispensable.
Next, we establish the RE and DB conditions for high dimensional mixed roots, and

leverage them to derive the convergence rates of Slasso.

2.3 Consistency of Slasso

The assumptions in this paper, though sharing similarities with those in MS and GLMS, are
tailored to accommodate mixed roots. We first state our assumptions, and then compare
them to those in GLMS. Define et = (e1,t, e2,t, · · · , ep,t)⊤ . We assume that the stationary
high dimensional vector et is generated by a linear transformation of independent innovations
εt = (εj,t)j∈[p]:

et = Φεt (9)

where Φ is a p× p deterministic matrix. Let Ft denote the σ-field generated by {us, εs}s≤t.

Assumption 1. Suppose that ut and εt are strictly stationary and ergodic. Moreover, ut is a
martingale difference sequence (m.d.s.) such that E (ut|Ft−1) = 0 and E(u2t |Ft−1) = σ2

u > 0.
There exist absolute constants Cu, bu, Cε, and bε such that for all t ∈ Z and a > 0,

Pr (|ut| > a) ≤ Cu exp(−a/bu), (10)

Pr (|εj,t| > a) ≤ Cε exp(−a/bε), (11)

for all j ∈ [p]. Furthermore, {εj,t}t∈Z and {εℓ,t}t∈Z are independent for all j ̸= ℓ.

For any two σ-fields A and B, define α(A,B) = supA∈A,B∈B |Pr (A ∩B) − Pr(A) Pr(B)|
and α(d) = sups∈Z α(σ({ut, εt}t≤s), σ({ut, εt}t≥s+d)).

Assumption 2. There exists absolute constants Cα, cα, r, and cε such that

α(d) ≤ Cα exp (−cαdr) , ∀d ∈ Z, (12)

and E
[∑∞

d=−∞ εk,tεk,t−d

]
≥ cε for any k ∈ [p].

Define Ω = ΦΦ⊤ where Φ has appeared in (9).

Assumption 3. There are absolute constants cΦ, CΦ and CL such that: (a) cΦ ≤ λmin(ΦΦ
⊤) ≤

λmax(ΦΦ
⊤) ≤ CΦ; (b) maxj∈[p]

∑p
ℓ=1 |Φjℓ| ≤ CL.
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Assumption 4. There exist some absolute constants ν > 0 and ξ ∈ (0, 1/8) such that: (a)
p = O(nν); (b) s = O(n1/8−ξ ∧ p1−ξ).

Assumption 5. There exist absolute constants ϵ ∈ (0, 1) and c̄ > 0, such that the parameters
{cj}j∈[p] in (4) satisfy: (a) c∗j ∈ (−2 + ϵ,−ϵ) when γj = 0, (b) c∗j ∈ [−c̄, c̄] when γj = 1.

Assumptions 1-3 are the same as those in GMLS. Assumption 1 imposes the exponential
tails of the innovations ut and εj,t. Assumption 2 characterizes the weak dependence property
by the α-mixing coefficient of the stationary innovations, and imposes a lower bound on
the long-run variance. Assumption 3 bounds the eigenvalues and column L1 norm of the
covariance matrix of et. Under the transformation (9), these bounds come into effect on both
the short-run and long-run covariance matrices of et. These assumptions are common in the
literature of high dimensional models and time series regression.

Assumption 4(a) follows GLMS to admit the growth of variable dimension p at an ar-
bitrary fast polynomial rate of n; an exponential growth rate is allowed with additional
complexity. Assumption 4(b) restricts the sparsity index by s = o(n1/8). The sparsity con-
dition can be relaxed to s = o(n1/4) if we follow MS to assume that the innovations (ej,t)j∈[p]
are linear processes with i.i.d. shocks and exponentially decaying coefficients, but s = o(n1/8)

is indispensable for hypothesis testing; see Assumption 4′ in Section 3.3.
For mixed roots, we additionally impose Assumption 5 on the parameter c∗j to demarcate

different degrees of persistence. Part (a) bounds the AR coefficients of stationary regressors
away from −1 and 1; Part (b) bounds |c∗j | from above for LURs, accommodating c∗j = 0 for
unit roots.

Remark 1. In Assumption 1, the m.d.s. assumption of ut and the conditional homoskedasticity
condition for the error term ut of the main regression (3) are not necessary for LASSO
consistency, but required for inference. See Remarks 2–4 of GLMS for justifications and
possible generalizations.

2.3.1 Restricted Eigenvalue

The coexistence of stationary regressors and LURs complicates the derivations of restricted
eigenvalues. Fortunately, mixed root regressors have a convenient property: LUR and sta-
tionary regressors are asymptotically uncorrelated. Therefore, after standardization by the
sample s.d. of the regressors, the Gram matrix Σ̂ is approximated by the following block-
diagonal matrix

∆̂ = diag
(
Σ̂(0), Σ̂(1)

)
,

where for k = 0, 1, Σ̂(k) = n−1
∑n

t=1 x
(k)
t−1x

(k)⊤
t−1 is the pk × pk Gram matrix of the regressors

x
(k)
t . This result is formulated as the following lemma.
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Lemma 1. Under Assumptions 1-5,

∥D−1
(
Σ̂− ∆̂

)
D−1∥∞ = Op

(
(log p)

3
2
+ 1

2r

√
n

)
(13)

as n→ ∞, where r is specified in Assumption 2.

With Lemma 1, we can streamline the derivation of the RE condition for the Gram
matrix Σ̂ by building RE for each diagonal block in ∆̂. The RE condition for the sample
Gram matrix Σ̂(0) of stationary regressors is standard. It depends on the commonly used
error bound (Fan et al., 2012) of the difference between the sample Gram matrix Σ̂(0) and
the population Gram matrix Σ(0) = E(x(0)t x

(0)⊤
t ), given as ∥Σ̂(0) − Σ(0)∥∞ = Op(

√
log p/n).

Therefore, the RE of Σ̂(0) is bounded away from below if the eigenvalues of Σ(0) are bounded
away from above and below.

The RE condition for LUR is in essence distinct from that of stationary regressors and
emerges as the most challenging hurdle for consistency of Slasso. In low dimensions, the Gram
matrix Σ̂(1), after scaled by n−1, converges in distribution to a non-degenerate stochastic
integral, given as

n−1Σ̂(1) d→
∫ 1

0

JC(1)(r)JC(1)(r)⊤dr (14)

where for a generic matrix C the stochastic integral JC(t) =
∫ t

0
eC(t−r)dB(r) is a vector of

Ornstein–Uhlenbeck processes, with B(r) being a multivariate Brownian motion. The di-
agonal entries of the stochastic integral on the right-hand side of (14) are nonnegative and
continuously distributed, with a non-trivial probability in a neighborhood of zero. Conse-
quently, in striking contrast to stationary and MI regressors, the minimum diagonal entry
of n−1Σ̂(1) diminishes to zero as the dimension of LUR regressors passes to infinity. In the
following Lemma 2, we deduce a lower bound of RE for standardized LUR.

Lemma 2. Under Assumptions 1-5, there exists an absolute constant c(1)κ such that

κ̂
(1)
D ≥ c

(1)
κ

s(log p)6
(15)

w.p.a.1 as n→ ∞.

The lower bound in Lemma 2 converges to zero at a sufficiently slow speed, and therefore
the consistency of Slasso is still ensured. To the best of our knowledge, this is the first result
of eigenanalysis for the Gram matrix of LUR under the p > n regime, where the constants
{c∗j}j∈G(1) are allowed to be heterogeneous among all regressors. This lower bound is slightly
smaller than the rate 1/s(log p)4 in Proposition 3(c) of MS for exact unit roots. This slight
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discrepancy, on one hand, indicates that we generalize the consistency of Slasso to LUR
regressors at virtually no cost in the rate of convergence. On the other hand, it sheds light
on the additional complexity of LUR in contrast to exact unit roots considered in MS. The
LUR regressors are not partial sums of stationary time series, which brings about additional
difficulties in theoretical justifications. The proof of Lemma 2 is sketched in the following
remark.

Remark 2. In this remark, we impose zero initial values to simplify the discussion. In the
proof, we first assume the innovations e(1)t are i.i.d. normal. The LUR process x(1)t can be
viewed as a partial sum of the first order difference ∆x

(1)
t = e

(1)
t +n−1C(1)x

(1)
t−1. For unit roots

C(1) is a null matrix and thus x(1)t =
∑t

s=1 e
(1)
t is a partial sum of a normally distributed

sequence. MS deduces a lower bound of RE for unit roots governed by an intermediary
number ℓ = Cℓ · s log p for some absolute constant Cℓ, by virtue of non-asymptotic concen-
tration inequalities for Wishart matrices. For local unit roots with a nonzero C(1), the term
n−1C(1)x

(1)
t−1 induces deviation in the aforementioned lower bound of RE, and we show that

this deviation is controlled by a function of ℓ. Under a sufficiently large choice of the absolute
constant Cℓ, the lower bound from the concentration inequalities of Wishart matrices domi-
nate the minor deviation caused by n−1C(1)x

(1)
t−1, thereby maintaining the convergence rate of

RE. In the last step, we leverage the Gaussian approximation result in GLMS to generalize
the RE condition to non-Gaussian innovations e(1)t .

By the block diagonal approximation in Lemma 1, we establish the following proposition
of the RE for the whole Gram matrix Σ̂.

Proposition 1. Under Assumptions 1-5, there exists an absolute constant cκ such that

κ̂D ≥ cκ
s(log p)6

· (16)

w.p.a.1 as n→ ∞.

2.3.2 Deviation Bound

Compared to RE, the DB condition for mixed roots is more straightforward and not sub-
stantially distinguished from that in MS.

Proposition 2. Under Assumptions 1-5, there exists some absolute constant CDB such that

4

∥∥∥∥ 1n
n∑

t=1

D−1xt−1ut

∥∥∥∥
∞

≤ CDB(log p)
3
2
+ 1

2r

√
n

(17)

w.p.a.1 as n→ ∞, where r is defined in Assumption 2.
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For low dimensional regressors under our assumptions, the classical law of large number
(LLN) and functional central limit theorem (FCLT) for predictive regression (Magdalinos
and Phillips, 2009) give

1

n

n∑
t=1

xj,t−1ut
σ̂j

= Op(n
−1/2).

Specifically, the order of n−1
∑n

t=1 xj,t−1ut relates to the degree of persistence γj, while the
standardization by 1/σ̂j renders the convergence rate as the common order n−1/2. The
convergence rate in Proposition 2 is almost the same as the low dimensional analogy up to a
logarithmic term.

2.3.3 Error Bounds

We partition the Slasso estimator into β̂S =
(
β̂(0)S⊤, β̂(1)S⊤

)⊤
. Theorem 1 below gives the

convergence rates of the Slasso estimator.

Theorem 1. Under Assumptions 1-5, there exists a sufficiently large absolute constant Cm,
such that when λ = Cm(log p)

3
2
+ 1

2r /
√
n,∥∥∥∥∥ 1n

n∑
t=1

x⊤t−1(β̂
S − β∗)

∥∥∥∥∥
2

2

= Op

(
s2(log p)8+

1
r

n

)
, (18)

∥β̂(1)S − β(1)∗∥2 +
√

log p

n
∥β̂(0)S − β(0)∗∥2 = Op

(
s3/2(log p)6+

1
2r

n

)
, (19)

and

∥β̂(1)S − β(1)∗∥1 +
√

log p

n
∥β̂(0)S − β(0)∗∥1 = Op

(
s2(log p)6+

1
2r

n

)
(20)

as n→ ∞, where r is defined in Assumption 2.

Theorem 1 enriches the results in MS to characterize the LASSO convergence rates for
mixed roots. The FCLT in low dimensional regression (Magdalinos and Phillips, 2009) sug-
gests the following convergence rates of the ordinary least square (OLS) estimator

β̂(1)OLS − β(1)∗ = Op

(
1

n

)
, β̂(0)OLS − β(0)∗ = Op

(
1√
n

)
.

The convergence rates of LASSO are analogous to those in OLS, multiplied by an additional
factor governed by the sparsity index s and a logarithmic factor. The 1/n in the denominators
on the right-hand side of (19) and (20) yields the super-consistency for LUR regressors.
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The Slasso estimator for the coefficients of stationary regressors follows the common
√
n-

consistency. Lastly, the convergence rates are the same as those established in Theorem 2 of
MS for pure unit roots up to a logarithmic term.

An essential difference from the results for i.i.d. data is the degree of the polynomial
function of s. The well-known L2 and L1 convergence rates of LASSO for i.i.d. data are
respectively

√
s log p/n and s

√
log p/n. The additional factor s in (19) and (20) stems from

the RE of LUR in Proposition B.1.

Remark 3. All theoretical orders of LASSO tuning parameters are only for technical proofs.
Similar assumptions are commonly imposed in the literature of high dimensional regression
(Bickel et al., 2009; Adamek et al., 2023). All numerical exercise in the current paper utilizes
data-driven tuning parameter selection; see Section 4 for details.

Remark 4. Our theory does not take cointegrated regressors into account. Theorem 4 in
MS shows that Slasso over-shrinks the coefficients of cointegrated regressors all the way to
zero, even if their true values are nonzero. We are unaware of any regularization method that
achieves estimation consistency when unit roots, stationary regressors, and cointegrated vari-
ables are mixed in the p≫ n scheme. Cointegrated variables induce even more complications
in the presence of mixed roots, thereby exceeding the scope of the current paper.

3 Simultaneous Inference

The maximum test, as the off-the-shelf device of simultaneous inference for high dimensional
regression, depends on a bias-free estimator with an asymptotically normal distribution for
each coefficient of interest. In the context of mixed roots, as introduced in Section 3.1, we
utilize the XDlasso by GLMS that simultaneously removes the shrinkage bias and Stambaugh
bias as a workhorse. Resorting to XDlasso, we propose the XDM test in Section 3.2, and
formulate its asymptotic guarantee in Section 3.3.

3.1 IVX-Desparsified LASSO

When the regressor in a simple regression is highly persistent, OLS is known to follow a pe-
culiar asymptotic distribution rather than normality. Therefore, OLS suffers the well-known
Stambaugh bias that ruins standard inferential procedures comparing the t-statistic to the
critical value from the standard normal distribution. Phillips and Magdalinos (2009)’s IVX
is a powerful tool to remove the Stambaugh bias, depending on a self-generated instrument

zj,t =
t∑

s=1

ρt−s
z ∆xj,s, and ρz = 1 +

cz
nθ
, (21)
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where cz < 0 and θ ∈ (0, 1) are user determined hyperparameters. In words, zj,t is an AR(1)
process with ρz being the AR coefficient and the differenced regressor ∆xj,t being the error
term. When xj,t is an exact unit root with ρ∗j = 1, the self-generated IV zj,t follows an
AR(1) process zj,t = ρzzj,t−1 + ej,t with a stationary innovation ej,t. This is called a mildly
integrated (MI) process with the degree of persistence θ ∈ (0, 1), which is less persistent than
an LUR. In the simple regression model, the IVX estimator of β∗

j is a two-stage least square
estimator using zj,t as an instrument. This IVX instrumentation reduces the persistence of
the regressor and recovers the asymptotically normal distribution.

In the context of high dimensional predictive regression, an auxiliary regression is in need
to decorrelate the instrument zj,t and all other regressors x−j,t = (xk,t)k ̸=j, for which we utilize
the following XDlasso procedure by GLMS. The order of zj,t’s sample s.d. is determined by
(θ ∧ γj), which varies among the regressors. To unify the magnitude of the instrumental
variable zj,t for each j, we standardize the instrument as

z̃j,t =
zj,t
τ̂j
, where τ̂j =

√√√√ 1

n

n∑
t=1

(zj,t − z̄j)2. (22)

Let r̂j,t be the residual from the following auxiliary Slasso regression:

r̂j,t = z̃j,t − x−j,tφ̂
[j],

φ̂[j] = arg min
φ∈Rp−1

1

n

n∑
t=1

(z̃j,t − x−j,tφ)
2 + µj∥D−jφ∥1. (23)

where D−j = diag({σ̂k}k ̸=j), and µj is the LASSO tuning parameter. The residual r̂j,t shares
the same degree of persistence with the instrument z̃j,t, and is asymptotically uncorrelated
to x−j,t. The XDlasso estimator is given as

β̂XD
j = β̂S

j +

∑n
t=1 r̂j,t−1(yt − x⊤t−1β̂

S)∑n
t=1 r̂j,t−1xj,t−1

, (24)

whose estimation error is decomposed as

β̂XD
j − β∗

j =

∑n
t=1 r̂j,t−1ut∑n

t=1 r̂j,t−1xj,t−1

−
∑n

t=1 r̂j,t−1x
⊤
−j,t−1(β̂

S
−j − β∗

−j)∑n
t=1 r̂j,t−1xj,t−1

. (25)

As ut is an m.d.s., the first term is asymptotically normal since the instrument zj,t, used
to generate r̂j,t, is less persistent than LUR. Moreover, the second term is bounded by
∥
∑n

t=1 x−j,t−1r̂j,t−1/
∑n

t=1 xj,t−1r̂j,t−1∥∞∥β̂S
−j−β∗

−j∥1. The Slasso estimation error ∥β̂S
−j−β∗

−j∥1
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is small, based on the convergence rates we establish in Theorem 1. Furthermore, the factor
∥
∑n

t=1 x−j,t−1r̂j,t−1/
∑n

t=1 xj,t−1r̂j,t−1∥∞ also has a small order, since the regressors x−j,t and
the residual r̂j,t in the auxiliary LASSO regression (23) are asymptotically uncorrelated. The
XDlasso estimator β̂XD

j is therefore asymptotically unbiased and normally distributed.
Why is the IVX transformation necessary? When xj,t is LUR with high persistence,

neither the Stambaugh bias nor the shrinkage bias is removed if we follow Dlasso (Zhang and
Zhang, 2014) to replace z̃j,t in (23) by the (standardized) regressor xj,t. First, the regression
(23) is spurious and thus the residual r̂j,t is still highly persistent. The first term on the right-
hand side of (25) therefore follows a peculiar asymptotic distribution instead of normality.
Second, the sample correlation coefficient of the residual r̂j,t from the spurious regression and
the regressors xj,t−1 does not diminish to zero, since both components follow highly persistent
stochastic trends. Therefore, the second term of (25) is still not negligible. More details are
available in Section 2.4 of GMLS. In the simulation studies, we compare our results to the
maximum test based on Dlasso to highlight the necessity of IVX transformation.

3.2 The Maximum Test: Multiplier Bootstrap

The asymptotic covariance between β̂XD
j and β̂XD

m is estimated by

ω̂XD
j,m =

σ̂2
u

∑n
t=1 r̂j,t−1r̂m,t−1∑n

t=1 r̂j,t−1xj,t−1 ·
∑n

t=1 r̂m,t−1xm,t−1

, (26)

where σ̂2
u = n−1

∑n
t=1 û

2
t with the Slasso residual ût = yt − x⊤t−1β̂

S. Under the null hypothesis
(2), the t-statistic

tXD
j = (β̂XD

j − β0,j)/
√
ω̂XD
j,j (27)

is asymptotically normal for any fixed j ∈ I. The asymptotic correlation coefficient matrix
of the vector of t-statistics tXD

I = (tXD
j )j∈I is estimated by the positive semi-definite matrix

Ω̃XD
I = (ω̂XD

j,m/
√
ω̂XD
j,j ω̂

XD
m,m)j,m∈I . (28)

It is worth noting that the diagonal entries of Ω̃XD
I are all one by construction. Under the

null hypothesis (2), we expect all t-statistics in tXD
I to be centered around zero. We therefore

construct the XDM test statistic as the maximum absolute value of the t-statistics, defined
as

XDMI = ∥tXD
I ∥∞. (29)
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A hypothesis testing under significance level α is feasible by virtue of the 100(1 − α)th
percentile of XDMI . We expect that XDMI , the maximum norm of the vector tXD

I with
each entry being asymptotically normal, is well approximated by the maximum norm of the
conditionally normal vector

ηI |Fn ∼ N
(
0|I|, Ω̃

XD
I

)
, (30)

where Fn is the σ-field defined above Assumption 1, and Ω̃XD
I defined in (28) estimates the

asymptotic covariance matrix of tXD
I . We therefore utilize the 100(1 − α)th percentile of

∥ηI∥∞
cvI(α) = inf {x ∈ R : Pr (∥ηI∥∞ ≤ x|Fn) ≥ 1− α} (31)

as the critical value. The XDM test rejects the null hypothesis (2) when

XDMI > cvI(α). (32)

Equivalently we can use the P-value

PvalI = Pr

(
∥ηI∥∞ > XDMI

∣∣∣∣Fn

)
,

and reject the null hypothesis when PvalI < α.

Remark 5. The critical value (31) is infeasible. In practice we can estimate it by the multiplier
bootstrap, simulating η[b]I |Fn ∼ N

(
0|I|, Ω̃

XD
I

)
for b = 1, 2, . . . , B, and store

ĉvI(α) = inf

{
x ∈ R :

1

B

B∑
b=1

1(∥η[b]I ∥∞ ≤ x) ≥ 1− α

}
. (33)

The approximation error between the feasible ĉvI(α) and the infeasible cvI(α) is negligible if
B is sufficiently large. We choose B = 10000 in all numerical exercises of the paper. Following
the literature (Chernozhukov et al., 2013; Zhang and Cheng, 2017; Fan et al., 2024), we focus
on the infeasible cvI(α) in theoretical analysis to avoid complications. Similarly, we can also
use the following bootstrapping P-value

P̂valI =
1

B

B∑
b=1

1
(
∥η[b]I ∥∞ > XDMI

)
(34)

to conclude the XDM test.
We summarize the procedures of the XDM test in Algorithm 1.
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Algorithm 1 (XDM Test for H0 : β
∗
j = β0,j for all j ∈ I).

Step1 Obtain β̂S from the Slasso regression (7). Save the residual ût = yt − x⊤t−1β̂
S and

σ̂2
u = n−1

∑n
t=1 û

2
t .

Step2 Obtain the IV zj,t by the transformation (21), and standardize it by (22).

Step3 Run the auxiliary LASSO regression (23), and save the residual r̂j,t.

Step4 Compute the XDlasso estimator (24) for all j ∈ I, and the covariance estimator
ω̂XD
j,m by (26) for all j,m ∈ I.

Step5 Obtain the t-statistic by (27) and generate the XDMI test statistic by (29).

Step6 For b = 1, 2, . . . , B, simulate η[b]I ∼ N
(
0|I|, Ω̃

XD
I

)
with the covariance matrix Ω̃XD

I

defined in (28). Calculate the critical value ĉvI(α) by (33), or the P-value P̂valI by
(34).
Reject H0 under the significance level α if XDMI > ĉvI(α), or equivalently P̂valI < α.

3.3 Theoretical Justifications

The asymptotic properties of the XDM test rely on the consistency of the auxiliary LASSO
regression (23). We first heuristically discuss the consistency of the auxiliary regression. Note
that two time series with different degrees of persistence are asymptotically uncorrelated.
When xj,t is LUR with γj = 1, the instrument zj,t is as persistent as an MI process with
a degree of persistence θ, and thus asymptotically uncorrelated to all LUR and stationary
regressors. Therefore, the auxiliary LASSO estimator satisfies ∥φ̂[j]∥1 = op(1). When xj,t is
stationary with γj = 0, the instrument zj,t is also stationary. Hence, the population truth
of the Slasso estimator φ̂[j]

ℓ is the linear projection of the (standardized) instrument z̃j,t on
x−j,t.

Let φ[j]∗ denote the pseudo-true coefficients of the regression model (23). We neglect the
complex formula of φ[j]∗ to Section A of the Online Appendices. The expression of φ[j]∗ is
case-by-case, depending on the relative magnitude of θ, γj, and the population Gram matrix
of the stationary regressors E(x(0)t x

(0)⊤
t ).

Assumption 6. maxj∈I ∥φ[j]∗∥0 ≤ s where I indexes the regressors of interest in the null
hypothesis (2), and s is specified in Assumption 4. Furthermore, maxj∈I ∥φ[j]∗∥1 ≤ C1 for
some absolute constant C1.

Assumption 6 restricts the L0 and L1 norm of the pseudo true coefficient φ[j]∗. We need
sparsity assumptions on both the main regression (3) and the auxiliary regressions (23) to
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bound the LASSO estimation errors. The sparsity of φ[j]∗ can be deduced by the sparsity
of the precision matrix of the stationary regressors; see Zhang and Cheng (2017) for details.
We abuse the same notation s to denote the sparsity level of all regression models under
consideration.

For inference, we need a sparsity condition different from that in Assumption 4(b). We
modify Assumption 4 into the following.

Assumption 4′. There exist some absolute constants ν > 0 and ξ ∈ (0, θ∧(1−θ)
4

) such that:
(a) p = O(nν); (b) s = O(n

θ∧(1−θ)
4

−ξ ∧ p1−ξ).

The only modification compared to Assumption 4 is to change s = o(n1/8) into s =

o(n
θ∧(1−θ)

4 ). The sparsity index s is unknown in practice. For practical implementation, we
carry on the choice of θ = 1/2 in GMLS, under which the quantity θ∧(1−θ)

4
takes the maximum

and therefore admits the weakest restriction on the sparsity index s. This choice is in sharp
contrast to the conventional wisdom of IVX (Kostakis et al., 2015; Phillips and Lee, 2016),
where θ is chosen as large as 0.95 to enhance the power of the inference. In the context of high
dimensional predictive regression, an excessively large θ leads to severe size distortion unless
the true coefficients satisfy the restrictive sparsity condition. As documented by Theorem 3,
though the power under our recommended choice θ = 0.5 is lower than that under θ = 0.95,
the XDM test is still consistent under a wide class of local alternatives.

Recall that λ and µj are the LASSO tuning parameters in the regressions (3) and (23).
The following theorem formally establish the asymptotic size of the XDM test.

Theorem 2. Suppose Assumptions 1-3, 4′, 5, and 6 hold. There exist sufficiently large con-
stants Cm and {Cj}j∈I, such that when λ = Cm(log p)

5
2
+ 1

2r /
√
n and µj = Cj(log p)

7
2
+ 1

2r /
√
nθ∧(1−θ),

we have under the null hypothesis (2)

sup
x∈R

∣∣∣∣Pr (XDMI < x)− Pr

(
∥ηI∥∞ ≤ x

∣∣∣∣Fn

)∣∣∣∣ = op(1) (35)

as n→ ∞. Therefore, limn→∞ Pr (XDMI > cvI(α)) = α.

The asymptotic size of XDM depends on the Gaussian coupling result in (35), deduced
using the Gaussian approximation theory for martingales by Hall and Heyde (1980) and
Belloni and Oliveira (2018). The convergence depends on high order moments of the error
term ut in the main regression (3), the convergence rates of LASSO estimators (7) and (23),
and the sup-norm estimation error of the correlation matrix estimator Ω̃XD

I in (28). To the
best of our knowledge, this is the first Gaussian coupling result for mixed root regressors that
are not weakly dependent.
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Remark 6. The challenges in the deduction of the Gaussian coupling result in Theorem 2 are
twofold. First, in contrast to the case of exact unit root considered in GLMS, the instrumental
variable zj,t in (21) is not completely an MI process when xj,t is LUR. In particular, the
instrument can be decomposed as zj,t = ζj,t+(1−ρ∗j)ψj,t, where ζj,t is an MI process and ψj,t

is a linear combination of (xj,s)s≤t−1. The additional errors caused by the remainder ψj,t need
careful analysis. Second, the sup-norm convergence of the correlation coefficient matrix Ω̃XD

I

under mixed roots is more complicated than that under i.i.d. or stationary data, for which
the approximation error between the sample Gram matrix of MI processes and a peculiar
deterministic matrix of an integral form is involved.

For power analysis, we consider the following alternative set

UI(c) =

{
β = (β1, β2, . . . , βp)

⊤ : max
j∈I

∣∣∣√n1+(θ∧γj)(βj − β0,j)
∣∣∣ > c log |I|

}
(36)

for a generic constant c > 0. Distinguished from the alternative set used for cross-sectional
data in Zhang and Cheng (2017), an additional factor

√
n(θ∧γj) appears in (36) due to faster

convergence rates for persistent regressors. Moreover, the lower bound in (36) is log |I|
rather than

√
log |I| as in Zhang and Cheng (2017). When xj,t is LUR, the standard error

of XDlasso ω̂XD
j,j defined in (26), multiplied by

√
n1+θ, converges in distribution to a peculiar

random variable. The additional
√
log |I| factor sources from the randomness introduced by

the standard error ω̂XD
j,j of LUR regressors.

The following theorem characterizes the power property of the XDM test.

Theorem 3. Suppose that |I| → ∞ as n → ∞, and the conditions in Theorem 2 hold. For
any absolute constant c0, whenenver β∗ ∈ UI(c0) we have

lim
n→∞

Pr (XDMI > cvI(α)) → 1.

The condition |I| → ∞ is merely for simplicity. We allow for a fixed |I|, under which
the log |I| in the alternative set (36) is replaced by any sequence that passes to infinity as
n → ∞. Theorem 3 indicates that the XDM test rejects the null hypothesis w.p.a.1 even
when only one true coefficient locally deviates from the null hypothesis, thereby sensitively
detecting sparse alternatives.

Consider a simple case where the scalar β∗
j deviates from the null hypothesis H0 : β

∗
j = 0.

By (36), for LURs with γj = 1 the XDM test is consistent under the alternative β∗
j =

O(1/nδj) for any δj ∈ (0, 1+θ
2
). The range always includes the important rate 1/

√
n, under

which var(xj,tβ
∗
j ) = O(1), balancing the larger order for a persistent xj,t with γj > 0 and a

standard order Op(1) for yt. Like all other standard inference methods, XDM achieves the
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√
n-consistency for a stationary xj,t with γj = 0.
Our theoretical statements have again witnessed the sharp distinctions of mixed roots from

the traditional i.i.d. and stationary setup. Some mild differences between the current results
and those in MS, including the slightly faster convergence rate of RE in Lemma 2, highlight
the additional complexity from the vicinity of unity. With mild costs in rates of convergence,
we establish positive results of Slasso and XDlasso under mixed roots, broadening their
usabilities for high dimensional macroeconomic and financial time series. The XDM test
is also original in that the Gaussian coupling theory for persistent regressors has not been
studied before.

4 Simulations

4.1 Setup

We consider the linear predictive regression model (3), where the p-dimensional predictors
xt follow the AR(1) processes (4). We separate the regressors into 4 groups, where the AR
coefficient ρ∗j is heterogeneous among different groups. Specifically, each group has p0 = p/4

regressors, and the AR(1) coefficients ρ∗ = (ρ∗1, ρ
∗
2, . . . , ρ

∗
p)

⊤ satisfies

ρ∗ = ϱ∗0 ⊗ 1p0 , ϱ
∗
0 =

(
0.5, 1− 1

n
, 0, 1 +

1

n

)⊤

. (37)

Specifically, xj,t is stationary for 1 ≤ j ≤ p0, and LUR for p0+1 ≤ j ≤ 4p0 including LI, UR,
and LE regressors. The coefficients of the predictive regression (3) are configured as

β∗ = 14 ⊗ (b0, 0
⊤
p0−1)

⊤. (38)

In other words, the coefficient accompanied with the first regressor in each group is b0,
with all other coefficients being zero. In the simulation studies, we vary the value of b0 to
investigate the size and power of the tests. The innovations (ut, e⊤t )⊤ are i.i.d. samples from a
multivariate normal distribution with mean zero and a covariance matrix (0.5|i−j|)i,j∈[p+1]. We
consider the sample sizes n ∈ {180, 240, 360} to mimic 15-year, 20-year, and 30-year monthly
data, and the variable dimensions p0 = {30, 50, 70}, under which p = 4p0 = {120, 200, 280}.
We conduct 1000 replications for each setting.

Tuning parameters. The LASSO tuning parameter for the main regression (3) is chosen
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Table 1: Size of the XDM and DM tests

p n
(a) XDM (b) DM

All ST LUR All ST LUR

140

180 0.040 0.053 0.043 0.206 0.053 0.219

240 0.062 0.051 0.067 0.250 0.046 0.269

360 0.054 0.052 0.055 0.342 0.045 0.379

210

180 0.042 0.049 0.040 0.168 0.041 0.194

240 0.037 0.049 0.031 0.257 0.044 0.279

360 0.055 0.052 0.047 0.362 0.055 0.396

280

180 0.039 0.046 0.039 0.196 0.054 0.208

240 0.032 0.038 0.035 0.215 0.038 0.252

360 0.050 0.052 0.052 0.370 0.046 0.403

by minimizing the following BIC criterion (Ahrens et al., 2020)

λ = argmin
λ

log

[
n∑

t=1

(yt − x⊤t−1β̂(λ))
2

]
+ ∥β̂(λ)∥0 · log n,

where β̂(λ) denotes the LASSO estimator under the tuning parameter λ. The tuning parame-
ter for the auxiliary LASSO regression (23) is also chosen in a parallel way. The hyperparam-
eters for the self-generated instrument carry on the choices in GLMS cz = −5 and θ = 0.5.
As illustrated below Assumption 4′, the choice θ = 0.5 allows for the weakest condition of
sparsity.

4.2 Size

We consider the following null hypotheses:

(a) HAll
0 : β∗

1 = β∗
2 = · · · = β∗

p = 0,

(b) HST
0 : β∗

1 = β∗
2 = · · · = β∗

p0
= 0,

(c) HLUR
0 : β∗

p0+1 = β∗
p0+2 = · · · = β∗

p = 0.

The first item is the global null hypothesis. The last two hypotheses are for different categories
of regressors according to their degrees of persistence. Though the maximum test by Zhang
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and Cheng (2017) based on Dlasso (Zhang and Zhang, 2014) is not designed for persistent
regressors, we compare XDM test with it to highlight the necessity of IVX transformation
under mixed roots. We abbreviate it as the Dlasso maximum (DM) test for convenience. All
tests are carried out under 5% significance level.

Table 1(a) summarizes the empirical size of the XDM test for the null hypotheses in
the itemized list. The primary finding is that XDM effectively controls the empirical size
around the nominal level. This conclusion is congruent among different sample sizes, variable
dimensions, and regressors of interest. In sharp contrast, as displayed in Table 1(b), the
empirical size of the global test by DM severely distorts from the nominal size. Scrutinizing
the DM test for each category of regressors, we observe that the size distortion is caused by
the LUR regressors, highlighting the necessity IVX transformation to remove the Stambaugh
bias.

4.3 Power

To examine the power of the XDM test, we vary b0 from 0 to 0.5 and report the rejection
rate for the null hypotheses HAll

0 , HST
0 , and HLUR

0 . Each graph in Figure 2 includes power
curves under various n’s for one variable dimension p and one null hypothesis. The XDM
test exhibits increasingly high power as the sample size n increases and the true coefficients
shift away from the null hypothesis.

To corroborate with Theorem 3, we reorganize the power curves by the category of regres-
sors of interest in different null hypotheses. In Figure 3, each graph sketches the power curves
for hypotheses HAll

0 , HST
0 , and HLUR

0 under each pair of sample size and variable dimension
(n, p). The test for HST

0 is evidently less powerful than that for HLUR
0 . This finding echoes

the classical theory of predictive regression that estimation and inference for more persistent
regressors enjoy faster rates of convergence. Nevertheless, there is almost no distinctions
among the tests for HAll

0 and HLUR
0 . This phenomenon concerts with Theorem 3 that the

order of XDM test’s power is determined by the indicator maxj∈I(θ ∧ γj). In our practice,
this indicator equals 0.5 across these two configurations of null hypotheses. Therefore, the
power of XDM tests for these two hypotheses share the same theoretical order.

This simulation exercise demonstrates the desirable size and power properties of the XDM
test under finite sample. The results not only support the theoretical statements in Section
3.3, but also evidence the credibility of XDM’s practical application.
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Figure 2: Power Curves by Sample Size
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Figure 3: Power Curves by Null Hypothesis
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5 Predictability of Inflation

Predictability of inflation is one of the central topics in macroeconomic prediction, and has
provoked a long debate in academia (Stock and Watson, 2003). The sharp decline and spike
of inflation caused by the recent Covid-19 shock in developed economies, including the United
States, pose challenges to inflation modeling and forecasting (Ball et al., 2022; Bobeica and
Hartwig, 2023). A surging strand of literature (Medeiros et al., 2021; Aliaj et al., 2023;
Hong et al., 2024) has surfaced the improvement of inflation forecasting by machine learning
under the data-rich environment. The benefits of machine learning to real-time tracking of
inflation has also caught attention from policymakers; see Knotek and Zaman (2024) for a
review. This section applies the XDM test to investigate the predictability of inflation using
high dimensional macroeconomic predictors. Our novel testing method for high dimensional
coefficients unpacks new insights and more thorough understanding of this topic, which were
unexplored due to the lack of feasible toolkits. Throughout this section, we focus on β0,j = 0

in the null hypothesis (2).

5.1 Data

We utilize the monthly time series from the FRED-MD database (McCracken and Ng, 2016),
with the sample period from January 1990 to January 2024. The inflation rate of our central
interest is calculated by πt = ∆ log(Pt)×100, where Pt denotes the Consumer Price Index for
All Urban Consumers: All Items (CPI) from the FRED-MD dataset. We focus on the linear
predictive regression πt = β∗

0 + x⊤t−1β
∗ + ut, and apply XDM to test the joint significance

of the coefficients β∗ and its subvectors. Predictors in xt include other 121 time series after
removing those with missing values during the sample period. Figure 4 plots the inflation
rate. Graphically the time series of inflation rate is stationary, which is also supported by
statistical evidence of the AR(1) coefficient 0.467 and the Augmented Dickey-Fuller (ADF)
test P-value 0.010.

In macroeconomics, the global financial crisis (GFC) around 2008 has been an impor-
tant time node. The pre-GFC period within our sample (from January 1990 to November
2007) falls in the Great Moderation of the United States coined by Stock and Watson (2002),
characterizing the mitigation of the volatility in business cycle fluctuations. In contrast, the
post-GFC period is featured by the Great Recessions during the financial crises in economies
around the world from late-2007 to mid-2009, and the Covid-19 recession starting in 2020.
These recessions and the recoveries that follow result in greater volatilities in the economies
compared to the pre-GFC period. We thus highlight the pre-GFC and the post-GFC periods
using different colors in Figure 4, and carry out empirical studies using these two subsam-
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ples respectively additional to the full-sample analysis. Visually, the inflation rate is more
volatile after the GFC, especially during the two aforementioned Great Recessions and their
recoveries, hinting the heterogeneity in its predictability between these two subsamples.

Figure 5 portrays the persistence of the 121 predictors. Panel (a) is a histogram of the
AR(1) coefficients. An overwhelming majority of the AR(1) coefficients concentrate around
1, indicating high degrees of persistence. Meanwhile, the AR coefficients range from 0.38 to
1.01, highlighting the necessity to consider mixed roots. Panel (b) depicts the distribution
of P-values of the Augmented Dickey–Fuller (ADF) test for each predictor. Only a small
portion of ADF tests reject the null hypothesis under the 10% level. These summary statistics
exhibit the nature of nonstationarity of the predictors, thereby motivating our XDM test for
persistent regressors.

5.2 Empirical Findings

The first problem of interest is the global significance of all coefficients in the predictive
model. Beyond that, the FRED-MD database categorizes all macroeconomic time series
into 8 groups by economic implications, including (1) output and income, (2) labor market,
(3) consumption and housing, (4) orders and inventories, (5) money and credit, (6) interest
rate and exchange rate, (7) prices, and (8) stock market. The CPI indicator that generates
our outcome variable πt belongs to the “price” group. We thus respond to a more profound
question: which groups of predictors have significant predictive power for future inflation?

The P-values reported by Table 2(a) show the answer. We first focus on the results by
the XDM test until further clarifications. The global null hypothesis is always unambigu-
ously rejected by XDM no matter for the full sample or the two subsamples, indicating that
statistical testing strongly evidences the predictability of inflation. In terms of the groups
by economic implications, “output and income” and “prices” also have strongly significant
predictive power for inflation across all considered sample periods. The former echos the
dynamic correlation between output and inflation extensively documented in macroeconomic
literature (Lucas, 1973; Galı and Gertler, 1999; Burstein, 2006). The significance of price
indicators’ predictive power is unsurprising; these indicators, in the same group as CPI, have
strong economic relevance to inflation.

Macro-finance indicators, including “money and credit”, “interest rate and exchange rate”,
and “stock market”, show significant predictive power to future inflation under 10% level in the
full sample and the post-GFC period, but not the pre-GFC period. This discrepancy among
different sample periods results from the sharp contrast between the Great Moderation in the
pre-GFC period and the Great Recessions in the post-GFC period, since during the latter
period the inflation is more volatile and responsive to financial and monetary shocks. As these
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monetary and financial indicators instantly respond to monetary policies, we conjecture that
this discrepancy is also a consequence of the increasing attention of the Federal Reserve on
inflation targeting after the GFC. 2

The predictive power of “labor market” variables is statistically significant under 10%
level for the full sample, exhibiting a silver lining of the Phillips Curve. Nevertheless, the
predictive power is not significant for the subsamples. There is no significant evidence from
the data for the predictive power of other economic indicators like “consumption and housing”
and “orders and inventories”.

Whilst it is a common practice to transform the regressors into stationary time series,
recent empirical applications of machine learning (Smeekes and Wijler, 2018, 2021; Mei and
Shi, 2024) have illuminated the benefits of nonstationary data in prediction. In FRED-MD,
each variable is accompanied with a transformation code (TCODE) denoting the elementary
transformation to stationarize the time series. Table 2(b) reports the results using trans-
formed variables according to the TCODEs. Compared to the results using raw data in
Table 2(a), stationarizing the regressors undermines the statistical significance of predictive
power for the full set of regressors, and the essential macroeconomic indicators like outputs
and prices. The impairment of predictive power in the pre-GFC period is the most apparent.
These results evidence that transforming the predictors into stationary time series prior to
prediction is not a silver bullet.

Recent empirical studies (Medeiros et al., 2021; Mei and Shi, 2024) have substantiated
the improvement of prediction with the lagged outcome and more lags of predictors included
in the model. To further evidence this argument, we consider πt = β∗

0 +
∑4

h=1 πt−hβ
∗
π,h +∑4

h=1 x
⊤
t−hβ

∗
x,h + ut and test the significance the coefficients of β∗

h = (β∗
π,h, β

∗⊤
x,h)

⊤ for h =

1, 2, 3, 4. Table 3 displays the testing results. The global null hypothesis is again indisputably
rejected by the XDM test. Also, the predictive power of the first order lag is strongly
evidenced, echoing the results from the one-period predictive regression. The predictive
power of the second order lag is also statistically significant using the full sample and the
pre-GFC period, but not the post-GFC period. In terms of the third and the fourth order lags,
the predictive power is not supported by XDM. These results exhibit that lags of predictors
can improve predictive power for future inflation, but the improvement mitigates as the lag
order increases.

We finally turn to the DM test without IVX transformation in Tables 2(a) and 3 with
highly persistent regressors. Across all configurations, the DM test exhibits stronger statis-

2As remarked by Cúrdia (2022) in the Conclusion, “In 2020 the Federal Reserve incorporated average
inflation targeting into its policy framework ... an AIT strategy that responds to both current and expected
future inflation could have achieved substantially better economic outcomes and reduced uncertainty in the
aftermath of the Global Financial Crisis. ”
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tical significance than the XDM test. The sharpest contrasts occur in the “consumption and
housing” and “orders and inventories” categories in Table 2(a), and the lags of the second and
third orders in Table 3. As we have documented, the DM test suffers severe size distortion
when regressors of interest are highly persistent. Therefore, the discrepancy between DM
and XDM tests is ascribed to the spurious significance caused by the bias in the DM test.
This phenomenon again sheds light on the need for IVX transformation in our XDM test to
remove the Stambaugh bias.

6 Conclusion

This paper proposes the XDM test for simultaneous inference of high dimensional predictive
regression with mixed roots. As a preparatory theoretical foundation, we first reestablish
the consistency of the workhorse Slasso estimator by the essential RE and DB conditions.
We then leverage XDlasso to remove both the shrinkage bias from LASSO penalty and the
Stambaugh bias from nonstationary regressors. The XDM test rejects the null hypothesis if
the maximum absolute value of the XDlasso t-statistic is larger than a critical value from a
high dimensional central limit theorem for persistent regressors. The validity of our testing
method is further supported by simulations and empirical applications.

In addition to the maximum test, the literature has also developed sum-type tests (Chen
et al., 2024) and Lp-norm-based tests (Kock and Preinerstorfer, 2023, 2024) for dense alterna-
tives. It is unclear how to generalize these methods to nonstationary data. These extensions
deserve explorations in the future.

While mixed root is a popular model of nonstationary time series due to its mature asymp-
totic theories, it is still insufficient to cover all peculiar characteristics of macroeconomic and
financial time series in the real world. Topics with profound influence in low dimensional
nonstationary time series include cointegration (Phillips, 1991), long memory (Shi and Yu,
2023), bubbles (Phillips et al., 2015b,a), and so forth. It is unclear how to extend these mod-
els to high dimensions. Encouraged by the preface in our paper quoted from Phillips (2014),
we are still on the way toward the terminal of predictive regression with many nonstationary
regressors.
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Table 2: P-values of the XDM and DM Tests

(a) Raw Data

Groups
XDM DM

Full preGFC postGFC Full preGFC postGFC

All 0.000 0.000 0.000 0.000 0.000 0.000

Output and Income 0.041 0.000 0.017 0.008 0.001 0.000

Labor Market 0.058 0.877 0.311 0.013 0.817 0.000

Consumption and Housing 0.170 0.315 0.944 0.091 0.694 0.083

Orders and Inventories 0.437 0.158 0.723 0.559 0.008 0.026

Money and Credit 0.029 0.797 0.097 0.015 0.234 0.049

Interest Rate and Exchange Rate 0.095 0.644 0.072 0.031 0.675 0.000

Prices 0.000 0.000 0.000 0.000 0.000 0.000

Stock Market 0.000 0.789 0.000 0.000 0.165 0.000

(b) Stationarized Predictors

Groups
XDM DM

Full preGFC postGFC Full preGFC postGFC

All 0.001 0.244 0.032 0.000 0.312 0.000

Output and Income 0.056 0.162 0.464 0.014 0.176 0.195

Labor Market 0.028 0.469 0.801 0.111 0.338 0.176

Consumption and Housing 0.865 0.810 0.242 0.017 0.111 0.116

Orders and Inventories 0.000 0.222 0.007 0.000 0.264 0.000

Money and Credit 0.179 0.033 0.138 0.342 0.043 0.674

Interest Rate and Exchange Rate 0.216 0.747 0.006 0.022 0.516 0.022

Prices 0.043 0.226 0.050 0.053 0.078 0.084

Stock Market 0.008 0.663 0.001 0.146 0.482 0.787

Notes: The P-values are calculated by Equation (34).
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Table 3: P-values of the XDM and DM Tests with More Lagged Predictors

Lags
XDM DM

Full preGFC postGFC Full preGFC postGFC

All 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000

2 0.002 0.007 0.349 0.000 0.000 0.022

3 0.257 0.217 0.486 0.355 0.819 0.008

4 0.561 0.542 0.087 0.224 0.197 0.581

Notes: The P-values are calculated by Equation (34).
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A The Expression of φ[j]∗

Define Σ(0) = E(x(0)t x
(0)⊤
t ). For any j ∈ G(0), define e(0)−j,t as the subvector of e(0)t removing ej,t,

Σ
(0)
−j,−j as the submatrix of Σ(0) removing the row and column associated with xj,t, Σ

(0)
·,j as

the column of Σ(0) associated with xj,t, and Σ
(0)
−j,j as the subvector of Σ(0)

·,j removing the entry
associated with xj,t. Write φ[j]∗ = (φ[j](0)∗⊤, φ[j](1)∗⊤)⊤, where φ[j](k)∗ collects the coefficients
of regressors in the group G(k), denoted as {xℓ,t}ℓ∈G(k)\{j}.

CASE I: j ∈ G(1). Then
φ[j]∗ = 0p−1.

CASE II: j ∈ G(0). Then

φ[j](k)∗ =

(Σ
(0)
−j,−j)

−1Σ
(0)
−j,j, k = 0,

0p1 , k = 1.

B Proofs

Throughout the proofs, we use c and C to denote generic positive constants that may vary
from place to place. Let In be the n × n identity matrix. For any positive sequences {an}
and {bn}, “an

p

≼ bn” means that there is an absolute constant, say c, such that the event

{an ≤ cbn} holds with probability approaching one (w.p.a.1.). Symmetrically, “an
p

≽ bn”

means “bn
p

≼ an”. The integer floor function is denoted as ⌊·⌋. For an n-dimensional vector
x = (xt)t∈[n], the L2-norm is ∥x∥2 =

√∑n
t=1 x

2
t . For notational simplicity, in the proofs we

assume p ≥ nν1 for some absolute constant ν1, which is reasonable as we focus on the high
dimensional case with a larger p relative to n.B.1 We always assume the initial value xj,t=0 = 0

without loss of generality.
B.1There is no technical difficulty in allowing p to grow either slowly at a logarithmic or fast at an exponential

rate of n, but we have to compare log p and log n in many places, and in many conditions and rates the term
“log p” has to be changed into log(np).

40



B.1 Proofs for Section 3

B.1.1 Preparatory Propositions for DB and RE

Proposition B.1. Under Assumptions 1-5, w.p.a.1

κI(Σ̂
(1), 3, s) ≥ c

(1)
κ n

s · log p
. (B.1)

Proof of Proposition B.1. This proposition is a direct corollary of Lemma B.5 by taking L = 3

and c(1)κ = 9, and the fact that κI(Σ̂(1), 3, s) ≥ κI(Σ̈
(1), L, s).

Proposition B.2. Under Assumptions 1-5,

(a) For stationary regressors, there exists some absolute constants σmin < σmax, such that

σmin ≤ min
j∈G(0)

σ̂j ≤ max
j∈G(0)

σ̂j ≤ σmax. (B.2)

(b) For nonstationary regressors,√
n

log p

p

≼ min
j∈G(1)

σ̂j ≤ min
j∈G(1)

σ̂j
p

≼
√
n log p. (B.3)

Proof of Proposition B.2. For Part (a), note that Σ(0) is a nonrandom positive definite
matrix with diagonal entries bounded away from zero and above. Also, {n−1

∑n
t=1 x

2
j,t−1}j∈G(0)

are diagonal entries of Σ̂(0) Therefore, there exists some absolute there exists some absolute
constants σmin, such that

min
j∈G(0)

1

n

n∑
t=1

x2j,t−1 ≥ 2σ2
min − ∥Σ̂(0) − Σ(0)∥∞

≥ 1.5σ2
min

when n is sufficiently large, where the second inequality applies (B.87). In addition,

x̄j = n−1

n∑
t=1

t−1∑
s=0

ρ∗t−1−s
j ej,s = n−1

n∑
t=1

(
n∑

s=t

ρ
∗(t−1−s)
j )ej,t

where

max
j∈G(0)

n∑
s=t−1

ρ
∗(s−t+1)
j = max

j∈G(0)

1− ρ
∗(n−t+1)
j

1− ρ∗j
= O(1).
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Therefore, (
∑n

s=t ρ
∗(t−1−s)
j )ej,t is a sup-exponential and α-mixing sequence. Standard bounds

of partial sum of centered sup-exponential weakly dependent time series, like (B.29), yield

max
j∈G(0)

∣∣∣∣∣ 1n
n∑

t=1

(
n∑

s=t

ρ
∗(t−1−s)
j )ej,t

∣∣∣∣∣ p

≼

√
log p

n
.

Therefore,

max
j∈G(0)

|x̄j|
p

≼

√
log p

n
.

By σ̂2
j = n−1

∑n
t=1 x

2
j,t−1 − x̄2j , we have

min
j∈G(0)

1

n
σ̂2
j ≥ min

j∈G(0)

1

n

n∑
t=1

x2j,t−1 − max
j∈G(k)

x̄2j

≥ 1.5σ2
min −

log p

n
≥ σ2

min

when n is sufficiently large. This result verifies the lower bound of (B.2). The upper bound
can be deduced in a parallel way.

For Part (b), the lower bound follows by

min
j∈G(1)

σ̂2
j ≥ κI(Σ̈

(1), 3, 1) ≥ c
(1)
κ

log p

where the second inequality applies Lemma B.5. For the upper bound, by (B.50), the regres-
sor xj,t =

∑t−1
s=0 ρ

∗t−1−s
j ej,s is a partial sum of a sub-exponential and α-mixing sequence. By

Lemma B.2 of MS,

max
j∈G(1),t∈[n]

|xj,t|
p

≼
√
n log p (B.4)

and therefore

max
j∈G(1)

σ̂2
j ≤ max

j∈G(1)
n−1

n∑
t=1

x2j,t−1 ≤ max
j∈G(1),t∈[n]

|xj,t|2
p

≼ n log p.

We complete the proof of Proposition B.2.

Proposition B.3. Under Assumptions 1-5, for k ∈ {0, 1} we have

∥n−1

n∑
t=1

x
(k)
t−1ut∥∞

p

≼
(log p)2+

1
2r

√
n1−k

. (B.5)

as n→ ∞.
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Proof of Proposition B.3. Equation (B.5) is a direct corollary of (B.45) in Lemma B.2, since
ut is stationary, strong mixing, and m.d.s. such that E(x(k)t−1ut) = 0.

B.1.2 Proof of Main Results

Proof of Lemma 1. By Proposition B.2,

1

minj∈G(1) σ̂j minℓ∈G(0) σ̂ℓ

p

≼
1√

log p/
√
n
=

√
n

log p
. (B.6)

Therefore,

∥D−1
(
Σ̂− ∆̂

)
D−1∥∞ ≤

∥n−1
∑n

t=1 x
(0)
t−1x

(1)⊤
t−1 ∥∞

minj∈G(1) σ̂j minℓ∈G(0) σ̂ℓ

p

≼
(log p)1+

1
2r√

n/ log p

p

≼
(log p)

3
2
+ 1

2r

√
n

= Op

(
(log p)

3
2
+ 1

2r

√
n

)
,

where the second row applies Lemma B.4 and (B.6).

Proof of Lemma 2. Define σ̂(1)
max = maxj∈G(1) σ̂j, σ̂

(1)
min = minj∈G(1) σ̂j, and ς̂(1) = σ̂

(1)
max/σ̂

(1)
min.

Further define δ̃(1) := (D(1))−1δ = (σ̂−1
j δj)j∈G(1) . Note that σ̂min∥δ̃Mc∥1 ≤ ∥δMc∥1 and

∥δM∥1 ≤ σ̂max∥δ̃M∥1. Therefore, whenever δ ∈ R(3, s) such that ∥δMc∥1 ≤ 3∥δM∥1 for
any |M| ≤ s, we have ∥δ̃Mc∥1 ≤ ς̂(1)∥δ̃M∥1 and δ̃ ∈ R

(
3ς̂(1), s

)
. Then

κ̂
(1)
D = inf

δ∈R(3,s)

δ⊤(D(1))−1Σ̂(1)(D(1))−1δ

δ⊤δ
= inf

δ∈R(3,s)

δ̃⊤Σ̂(1)δ̃

δ̃⊤(D(1))2δ̃

≥ inf
δ̃∈R(3ς̂(1),s)

δ̃⊤Σ̂(1)δ̃

δ̃⊤(D(1))2δ̃
≥ (σ̂(1)

max)
−2 inf

δ̃∈R(3ς̂(1),s)

δ̃⊤Σ̂(1)δ̃

δ̃⊤δ̃
=
κ(Σ̂(1), 3ς̂(1), s)

(σ̂
(1)
max)2

.

Taking L = 3ς̂(1). By Proposition B.5 we have κ(Σ̂(1), 3ς̂(1), s) ≥ cn

9s log p(σ̂
(1)
max)2 · (ς̂(1))2

w.p.a.1 for some absolute constant c. By (B.3), there exists some absolute constant c′ such
that

(ς̂(1))2 ≥ c′(log p)2 and (σ̂(1)
max)

2 ≥ c′n log p.

Therefore,
κ(Σ̂(1), 3ς̂(1), s) ≥ cn

9s(log p)4(c′)2

w.p.a.1. Then Lemma 2 follows with c(1)κ = c/(3c′)2.
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Proof of Proposition 1. We have for any δ

δ⊤D−1Σ̂D−1δ ≥ δ⊤D−1∆̂D−1δ − ∥D−1(Σ̂− ∆̂)D−1∥∞∥δ∥21.

Lemmas 2 and (B.88) suggest that for any δ ∈ R(3, s)

δ⊤D−1∆̂D−1δ

∥δ∥22
≥ c

s(log p)4

for some absolute constant c. By (B.79) and Lemma 1,

∥D−1(Σ̂− ∆̂)D−1∥∞∥δ∥21
∥δ∥22

= Op

(
(log p)

3
2
+ 1

2r

√
n

)
· ∥δ∥

2
1

∥δ∥22

= Op

(
s(log p)

3
2
+ 1

2r

√
n

)
.

Therefore,
δ⊤D−1Σ̂D−1δ

∥δ∥22
≥ c

s(log p)4
+Op

(
s(log p)

3
2
+ 1

2r

√
n

)
≥ 0.5c

s(log p)4

when n is sufficiently large, where the second inequality applies Assumption 4. Proposition
1 thus follows with cκ = 0.5c.

Proof of Proposition 2. The DB condition follows by

n−1∥
n∑

t=1

D−1xt−1ut∥∞ = max
j∈[p]

n−1

∣∣∣∣∣
n∑

t=1

xj,t−1

σ̂j
ut

∣∣∣∣∣
p

≼
(log p)2+

1
2r

mink∈{0,1}
√
n1+k minj∈G(k) σ̂j

p

≼
(log p)

5
2
+ 1

2r

√
n

,

where the first inequality in the second row applies Proposition B.3, and the last inequality
applies Proposition B.2.

Proof of Theorem 1. By Lemma 1 of MS, our Propositions 1 and 2 imply

∥n−1

n∑
t=1

x⊤t−1(β̂
S − β∗)∥22 = Op

(
s(log p)5+

1
r /n

1/s(log p)4

)
= Op

(
s2(log p)9+

1
r

n

)
, (B.7)

∥D(β̂S − β∗)∥2 = Op

(√
s(log p)

5
2
+ 1

2r /
√
n

1/s(log p)4

)
= Op

(
s3/2(log p)

13
2
+ 1

2r

√
n

)
, (B.8)
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and

∥D(β̂S − β∗)∥1 = Op

(
s(log p)

5
2
+ 1

2r /
√
n

1/s(log p)4

)
= Op

(
s2(log p)

13
2
+ 1

2r

√
n

)
. (B.9)

as n→ ∞. (18) follows (B.7). (19) and (20) follow by (B.8), (B.9), Proposition B.2, and the
inequality

∥β̂(k)S − β(k)∗∥q ≤
1

minj∈G(k) σ̂j
∥D(k)(β̂(k)S − β(k)∗)∥q ≤

1

minj∈G(k) σ̂j
∥D(β̂S − β∗)∥q

for q = 1, 2.

B.2 Proofs for Section 3

B.2.1 Auxiliary Regression and Bias Correction

Define
φ̃[j]∗ = τ̂−1

j φ[j]∗

where τ̂j is the sample s.d. of the instrument zj,t defined in (22), and φ[j]∗ is the pseudo-true
coefficient is defined in Section A. Define δmin := θ ∧ (1− θ).

Proposition B.4. Under the conditions in Theorem 2, when µj =
Cj(log p)

7
2+ 1

2r√
nδmin

max
j∈[p]

∥D−j(φ̂
[j] − φ̃[j]∗)∥1

p

≼
s2(log p)

15
2
+ 1

2r

√
nδmin

.

Proof of Proposition B.4. The lower bound of RE, cκ/s(log p)4, has been established by
Proposition 1. By Lemma 1 in MS, it suffices to show the following DB condition

max
j∈[p]

∥n−1

n∑
t=1

D−1
−jx−j,t−1(z̃j,t−1 − x⊤−j,t−1φ̃

[j]∗)∥∞
p

≼
(log p)

7
2
+ 1

2r

√
nδmin

.

We only need to show

max
j∈G(k)

∥n−1

n∑
t=1

D−1
−jx−j,t−1(z̃j,t−1 − x⊤−j,t−1φ̃

[j]∗)∥∞
p

≼
(log p)

7
2
+ 1

2r

√
nδmin

(B.10)

for k = {0, 1}.
CASE I. When k = 1, by the definition of φ[j]∗ in Section A we have φ̃[j]∗ = 0p−1 for any
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j ∈ G(1). In addition, by (B.115) we have for m ∈ {0, 1},

max
ℓ∈G(m),j∈G(1)

|
n∑

t=1

xℓ,t−1zj,t−1|
p

≼ (nθ∧m + nθ+m−1
2 )n(log p)3+

1
2r .

Therefore,

max
j∈G(1)

∥n−1

n∑
t=1

D−1
−jx−j,t−1(z̃j,t−1 − x⊤−j,t−1φ̃

[j]∗)∥∞

≤ max
m∈[K]

maxℓ∈G(m),j∈G(1) |
∑n

t=1 xℓ,t−1zj,t−1|
n ·minℓ∈G(m) σ̂ℓ minj∈G(1) τ̂j

p

≼
(nθ∧m + n− 1

2
+θ+m

2 )(log p)
7
2
+ 1

2r

√
nm

√
nθ

, (B.11)

where the last inequality applies Proposition B.2 and Lemma B.8. In addition,

nθ∧m
√
nm

√
nθ

=
1√

n(m∨θ)−(θ∧m)
≤ 1√

nδmin

,

and
n− 1

2
+θ+m

2

√
nm

√
nθ

=
1√
n(1−θ)

≤ 1√
nδmin

.

Therefore, by (B.11) we have

max
j∈G(1)

∥n−1

n∑
t=1

D−1
−jx−j,t−1(z̃j,t−1 − x⊤−j,t−1φ̃

[j]∗)∥∞
p

≼
(log p)

7
2
+ 1

2r

√
nδmin

. (B.12)

CASE II. When k = 0, by (B.115)

max
ℓ∈G(m),j∈G(0)

|
n∑

t=1

xℓ,t−1zj,t−1|
p

≼ (nk∧m + nk+m−θ
2 ) · n(log p)3+

1
2r . (B.13)

By the definition of φ[j]∗ in Section A, we have for any j ∈ G(0), φ[j]∗
i ̸= 0 if and only if γi = k

. Therefore, when m = 1,

max
ℓ∈G(m),j∈G(0)

|
n∑

t=1

xℓ,t−1x
⊤
−j,t−1φ

[j]∗| ≤ max
ℓ∈G(m),i∈G(0)

|
n∑

t=1

xℓ,t−1xi,t−1| max
j∈G(k)

∥φ[j]∗∥1

p

≼ n · (log p)1+
1
2r , (B.14)
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where the last inequality applies (B.4) and Assumption 6. By (B.13) and (B.14), we have

max
ℓ∈G(1),j∈G(0)

|n−1

n∑
t=1

xℓ,t−1

σ̂ℓ
(z̃j,t−1 − x⊤−j,t−1φ̃

[j]∗)|

≤
maxℓ∈G(1),j∈G(0) |

∑n
t=1 xℓ,t−1(zj,t−1 − x⊤−j,t−1φ

[j]∗)|
n ·minℓ∈G(1) σ̂ℓ minj∈G(0) τ̂j

(B.15)

p

≼
n

1−θ
2 (log p)

7
2
+ 1

2r

√
n

,

where the last inequality applies Proposition B.2 and Lemma B.8. Following the same argu-
ments for (B.12), we have

max
ℓ∈G(1),j∈G(0)

|n−1

n∑
t=1

xℓ,t−1

σ̂ℓ
(zj,t−1 − x⊤−j,t−1φ

[j]∗)|
p

≼
(log p)

7
2
+ 1

2r

√
nδmin

. (B.16)

When m = 0, recall that zj,t = xj,t − (1− ρz)ψj,t by (B.102), and the definitions of Σ(0)
−j,−j

and Σ
(k)
−j,j in Section A. Again, recall by the definition in Section A that we have for any

j ∈ G(0), φ[j]∗
i ̸= 0 if and only if γi = γ(0) . Therefore,

max
ℓ,j∈G(0),ℓ ̸=j

|n−1

n∑
t=1

xℓ,t−1(xj,t−1 − x⊤−j,t−1φ
[j]∗)|

= max
j∈G(0)

∥n−1

n∑
t=1

x
(k)
−j,t−1(xj,t−1 − x⊤−j,t−1φ

[j]∗)∥∞

≤ max
j∈G(0)

∥n−1

n∑
t=1

x
(k)
−j,t−1xj,t−1 − Σ

(k)
·,j ∥∞ + max

j∈G(0)
∥n−1

n∑
t=1

x
(k)
−j,t−1x

(k)⊤
−j,t−1φ

[j]∗ − Σ
(k)
·,j ∥∞

≤ max
j∈G(0)

∥n−1

n∑
t=1

x
(k)
−j,t−1xj,t−1 − Σ

(k)
·,j ∥∞ + max

j∈G(0)
∥n−1

n∑
t=1

x
(k)
−j,t−1x

(k)⊤
−j,t−1 − Σ

(k)
−j,−j∥∞ · ∥φ[j]∗∥1

p

≼(log p)3+
2
r + n− 1

2 (log p)3+
1
2r ,

where the last inequality applies (B.87) and the upper bound of φ[j]∗’s L1-norm Assumption
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6. Therefore,

max
ℓ,j∈G(0),ℓ̸=j

|n−1

n∑
t=1

xℓ,t−1

σ̂ℓ
(z̃j,t−1 − x⊤−j,t−1φ̃

[j]∗)|

≤
maxℓ,j∈G(0),ℓ̸=j |

∑n
t=1 xℓ,t−1(zj,t−1 − x⊤−j,t−1φ

[j]∗)|
n ·minℓ∈G(k) σ̂ℓminj∈G(k) τ̂j

p

≼
(log p)

7
2
+ 1

2r

√
n

=
(log p)

7
2
+ 1

2r

√
n

≤ (log p)
7
2
+ 1

2r

√
nδmin

. (B.17)

By (B.16) and (B.16), when k = 1,

max
j∈G(k)

∥n−1

n∑
t=1

D−1
−jx−j,t−1(z̃j,t−1 − x⊤−j,t−1φ̃

[j]∗)∥∞
p

≼
(log p)

7
2
+ 1

2r

√
nδmin

. (B.18)

Equation (B.10) follows by (B.12) for k = 1 and (B.18) for k = 0. We complete the proof of
Proposition B.4.

Recall from (B.128) that r∗j,t = zj,t − x⊤−j,tφ
[j]∗ is the true error term in the auxiliary

regression. Also, řj,t = τ̂j r̂j,t is the residual of the auxiliary regression (23) standardized by
the sample s.d. of the instrument. By some fundamental calculations, we have

β̂XD
j − β∗

j

ω̂XD
j

= sgnj (Nj + Errj,1 + Errj,2) , (B.19)

where sgnj = |
∑n

t=1 řj,t−1xj,t−1|/
∑n

t=1 řj,t−1xj,t−1 equals either 1 or −1, and

Nj =

∑n
t=1 r

∗
j,t−1ut√

nΠj,j

, (B.20)

with Πj,j = nθ∧γj Π̃j,j by (B.143), and Π̃j,j defined in (B.142) is a positive constant with an
O(1) order. Therefore, √

nΠj,j = O(
√
n1+θ∧γj).

As for the errors,

Errj,1 =
n∑

t=1

r∗j,t−1ut

 1√
nΠj,j

− 1√∑n
t=1 r̃

2
j,t−1

 ,
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and

Errj,2 =

∑n
t=1(řj,t−1 − r∗j,t−1)ut −

∑n
t=1 řj,t−1x

⊤
t−1(β̂

S
−j − β∗

−j)√∑n
t=1 ř

2
j,t−1

.

Proposition B.5. Under the conditions in Theorem 2, we have

sup
j∈[p]

|Errj,1 + Errj,2|
p

≼
(log p)10+1/r

√
nδmin

as n→ ∞, where δmin = θ ∧ (1− θ).

Proof of Proposition B.5. Define ϕj = θ ∧ γj. We first bound Errj,1. By (B.146),

sup
j∈[p]

√
n1+ϕj

∣∣∣∣∣∣ 1√
nΠj,j

− 1√∑n
t=1 r̃

2
j,t−1

∣∣∣∣∣∣ ≤ ∥Q1/2
n (D

−1/2
Π − D̂

−1/2
Π,n )∥∞

p

≼
s2(log p)11+

1
2r

√
nδmin

. (B.21)

In addition, by (B.135) and the definition of vj,t in (B.136),

sup
j∈[p]

∣∣∣∣∣ 1√
n1+ϕj

n∑
t=1

r∗j,t−1ut

∣∣∣∣∣ ≤ sup
j∈[p]

∣∣∣∣∣ 1√
n1+ϕj

n∑
t=1

vj,t−1ut

∣∣∣∣∣+ sup
j∈[p]

∣∣∣∣∣ 1

nθ∨γj
√
n1+ϕj

n∑
t=1

ψj,t−1ut

∣∣∣∣∣
p

≼ sup
j∈[p]

√
n1+ϕj(log p)2+

1
2r

√
n1+ϕj

+ sup
j∈[p]

n
1
2
+

γj∨θ

2
+(θ∧γj)(log p)2+

1
2r

nθ∨γj
√
n1+(θ∧γj)

≤ 2(log p)2+
1
2r , (B.22)

where in the second line, the upper bound of the first term Proposition B.3, and the upper
bound of the second term applies (B.105). Then (B.21) and (B.22) yield

sup
j∈[p]

|Errj,1|
p

≼ sup
j∈[p]

∣∣∣∣∣ 1√
n1+ϕj

n∑
t=1

r∗j,t−1ut

∣∣∣∣∣ · supj∈[p]

√
n1+ϕj

∣∣∣∣∣∣ 1√
nΠj,j

− 1√∑n
t=1 ř

2
j,t−1

∣∣∣∣∣∣ p

≼
s2(log p)13+

1
r

√
nδmin

.

We then bound Errj,2. By (B.134), there exists some absolute constant c such that

min
j∈[p]

√√√√ 1

n1+ϕj

n∑
t=1

ř2j,t−1 = min
j∈[p]

√√√√ 1

n1+ϕj

n∑
t=1

ř2j,t−1 > c. (B.23)
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In addition,

max
j∈[p]

∣∣∣∣∣ 1√
n1+ϕj

n∑
t=1

(řj,t−1 − r∗j,t−1)ut

∣∣∣∣∣ = max
j∈[p]

∣∣∣∣∣ τ̂j√
n1+ϕj

n∑
t=1

utx
⊤
−j,tD

−1
−jD−j(φ̂

[j] − φ̃[j]∗)

∣∣∣∣∣
≤ max

j∈[p]

τ̂j√
n1+ϕj

∥
n∑

t=1

D−1
−jx−j,tut∥∞ · ∥D−j(φ̂

[j] − φ̃[j]∗)∥1

p

≼
s2(log p)

19
2
+ 1

r

√
nδmin

, (B.24)

where the last inequality applies (B.122) that bounds τ̂j, the DB condition in Proposition 2,
and the estimation error of the auxiliary regression by Proposition B.4. Finally,

max
j∈[p]

∣∣∣∣∣ 1√
n1+ϕj

n∑
t=1

řj,t−1x
⊤
t−1(β̂

S
−j − β∗

−j)

∣∣∣∣∣
=max

j∈[p]

∣∣∣∣∣ τ̂j√
n1+ϕj

n∑
t=1

r̂j,t−1x
⊤
t−1D

−1
−jD−j(β̂

S
−j − β∗

−j)

∣∣∣∣∣
≤max

j∈[p]

τ̂j√
n1+ϕj

∥
n∑

t=1

D−1
−jx

⊤
t−1r̂j,t−1∥∞ · ∥D−j(β̂

S
−j − β∗

−j)∥1

p

≼max
j∈[p]

τ̂j√
n1+ϕj

· nµj ·
s2(log p)

13
2
+ 1

2r

√
n

p

≼
s2(log p)10+

1
r

√
nδmin

, (B.25)

where the third inequality applies the Karush–Kuhn–Tucker condition of the auxiliary regres-
sion (23) with µj being the LASSO tuning parameter, and the LASSO regression error (B.9);
the last inequality applies (B.122) that bounds τ̂j, and the convergence rate of µj specified
in Proposition B.4. Then Errj,2 is bounded by (B.23), (B.24), and (B.25). We complete the
proof of Proposition B.5.

B.2.2 Coupling

Recall that Nj is defined in (B.20), and write N = (Nj)j∈[p].

Proposition B.6. Under the conditions in Theorem 2, there exists a sequence of vectors
Z ∈ Rp such that (a) ZI is normally distributed conditioning on {r∗t }t∈[n−1], and (b) there
exists some absolute constant c such that

∥N− Z∥∞
p

≼ n−c, (B.26)

and
∥E(ZZ⊤|{r∗t−1}t∈[n])− Vn∥∞ = Op

(
n−1/4(log p)c

)
. (B.27)
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as n→ ∞, where Vn is defined above Lemma B.12.

Proof. We first use a normal approximation for χj,t = r∗j,t−1ut, which is a martingale. Also,
Nj =

∑n
t=1 χj,t√
nΠj,j

. Without loss of generality, suppose σ2
u = 1 to simplify the notation. According

to the Skorokhod representation theorem (Strassex, 1967, Theorem 4.3), there exists a richer
probability space that supports a standard Brownian motion Bj (·) and a sequence of stopping
time {τjt}t≥0 such that for all t ≥ 0,

t−1∑
s=0

χj,s = Bj

(
t−1∑
s=0

τj,s

)
, almost surely.

E [τj,t|Ft−1] = E
[
χ2
j,t|Ft−1

]
= r∗2t−1,

E(|τjt|ϖ|Ft−1) ≤ ČϖE(|χj,t|2ϖ|Ft−1); ∀ϖ > 4(ν + 1) (B.28)

for some positive constant Čϖ. The Brown motion conditional on the sequence of stopping
time follows[

Bj

(
n∑

t=1

τj,t−1

)
− Bj(

n∑
t=1

r∗2j,t−1)

] ∣∣∣∣∣{τj,t, r∗t }t∈[n−1] ∼ N

(
0,

∣∣∣∣∣
n∑

t=1

τ̃j,t−1

∣∣∣∣∣
)

where τ̃j,s = τj,s − E
[
χ2
j,t−1|Ft−1

]
is the demeaned version of τj,s. The moment properties of

the normal distribution gives

E

[∣∣∣∣∣Bj

(
n∑

t=1

τj,t−1

)
− Bj(

n∑
t=1

r∗2t−1)

∣∣∣∣∣
ϖ ∣∣∣∣∣{τ̃jt}0≤t≤n−1

]
=π−1/22ϖ/2Γ

(
ϖ + 1

2

) ∣∣∣∣∣
n∑

t=1

τ̃j,t−1

∣∣∣∣∣
ϖ/2

, ∀ϖ > 0,

(B.29)

where Γ (·) is the Gamma function. For simplicity, write Er(·) = E(·|{r∗t−1}t∈[n]). Note that
{τ̃js}s≥0 is a martingale difference sequence, and it thus satisfies for ϖ ≥ 4 that

Er

∣∣∣∣∣
n−1∑
s=0

τ̃js

∣∣∣∣∣
ϖ/2
 ≤ ϖ

ϖ − 2
C(1)

ϖ

Er

(
n−1∑
s=0

E[τ̃ 2js]

)ϖ/4

+
n−1∑
s=0

Er[|τ̃js|ϖ/2]


≤ ϖ

ϖ − 2
C(1)

ϖ

Er

(
Č2

n−1∑
s=0

Er[χ
4
j,s]

)ϖ/4

+ Čϖ/2

n−1∑
s=0

Er|χj,s|ϖ


=
ϖ

ϖ − 2
C(1)

ϖ

(
Č

ϖ/4
2 ∨ Čϖ/2

)Er

(
n−1∑
s=0

E[χ4
j,s]

)ϖ/4

+
n−1∑
s=0

Er|χj,s|ϖ


(B.30)
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where the first inequality by the Rosenthal’s inequality (Hall and Heyde, 1980, Theorem
2.12, p.23) with an absolute constant C(1)

ϖ , and the second inequality by (B.28). Notice that
Lemma B.9 implies

sup
j∈[p]

Er

(
n−1∑
s=0

Er

[
χ4
j,s

Π4
j,j

])ϖ/4

+ sup
j∈[p]

n−1∑
s=0

Er

∣∣∣∣χj,s

Πj,j

∣∣∣∣ϖ = O(nϖ/4(log p)5ϖ/2 + n(log p)5ϖ/2)

(B.31)

= O
(
nϖ/4(log p)5ϖ/2

)
.

Define Zj = 1√
nΠj,j

Bj(
∑n

t=1 r
∗2
j,t−1). Given ϖ > 4, by the law of iterated expectations and

(B.29) we have the unconditional moment

sup
j∈[p]

E [|(Nj − Zj)|ϖ]

= sup
j∈[p]

E

[∣∣∣∣∣ 1√
nΠj,j

(
n∑

t=1

χj,t−1 − Bj(
n∑

t=1

r∗2j,t−1)

)∣∣∣∣∣
ϖ]

= n−ϖ/2E

[
E

[∣∣∣∣∣Bj(
n∑

t=1

τj,t−1)− Bj(
n∑

t=1

r∗2j,t−1)

∣∣∣∣∣
ϖ ∣∣∣∣∣{τj,t, r∗t }t∈[n−1]

]]

= π−1/22ϖ/2Γ

(
ϖ + 1

2

)
n−ϖ/2E

∣∣∣∣∣
n∑

t=1

τ̃j,t−1

∣∣∣∣∣
ϖ/2


= O(n−ϖ/2nϖ/4(log p)c) = O(n−ϖ/4(log p)5ϖ/2), (B.32)

uniformly for all j ∈ [p], where the order follows by (B.30) and (B.31). The above bound for
the ϖth moment allows us to use the Markov inequality to bound the probability

Pr

(
sup
j∈[p]

|Nj − Zj| > µ

∣∣∣∣∣{r∗t−1}t∈[n]

)
≤p sup

j∈[p]
Pr

(
|Nj − Zj| > µ

∣∣∣∣∣{r∗t−1}t∈[n]

)
≤ p

µϖ
sup

j∈[p+1]

Er [|Nj − Zj|ϖ]

p

≼ p · n−δminϖ/2µ−ϖ = Op

(
nν−δminϖ/2µ−ϖ(log p)5ϖ/2

)
for any µ > 0, given the order p = O (nν). Taking ϖ = max{4, 6ν/δmin} and µ = n−ν/ϖ, we
have

Pr

(
sup
j∈[p]

|Nj − Zj| > n−ν/ϖ

∣∣∣∣∣{r∗t−1}t∈[n]

)
p

≼ n−ν(log p)c → 0.

The conditional probability is a random variable uniformly bounded in [0, 1]. Applying the
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Bounded Convergence Theorem to the conditional probability, we have

Pr

(
sup
j∈[p]

|Nj − Zj| > n−ν/ϖ

)
→ 0

as n→ ∞. Then (B.26) follows by taking Z = (Zj)j∈[p] .

We then prove (B.27). By (B.32) we have

sup
j∈[p]

Er

[
|(Nj − Zj)|2

]
= Op(n

−1/2(log p)5ϖ/2).

By definition of Vn above Lemma B.12,

∥Er(ZZ
⊤)− Vn∥∞ = sup

j.ℓ∈[p]
|Er (NjNℓ − ZjZℓ)|

≤ sup
j.ℓ∈[p]

|Er (Nj(Nℓ − Zℓ))|+ sup
j.ℓ∈[p]

|Er (Zℓ(Nj − Zj))|

≤
√

sup
j.ℓ∈[p]

Er(N2
j + Z2

j) · sup
j∈[p]

Er ((Nj − Zj)2) = Op(n
−1/4(log p)5ϖ/2),

where the order applies (B.32). We complete the proof of Proposition B.6.

Recall that ηI defined in (30) is asymptotically normal with covariance matrix Ω̃XD
I con-

ditionally on the observed data.

Proposition B.7. Under the conditions in Theorem 2, we have

sup
x∈R

|Pr (∥NI∥∞ > x)− Pr (∥ηI∥∞ > x|Fn)| = op(1).

as n→ ∞.

Proof of Proposition B.7. Define ZI = (Zj)j∈I , where Z = (Zj)j∈[p] is the conditional Gaus-
sian vector specified in Proposition B.6. By the Gaussian Perturbation Lemma in Belloni
and Oliveira (2018, Lemma A.2), we have

sup
x∈R

|Pr (∥ZI∥∞ > x|Fn)− Pr (∥ηI∥∞ > x|Fn)|
p

≼∥E
(
ZIZ

⊤
I |Fn

)
− E

(
ηIη

⊤
I |Fn

)
∥∞

=∥E
(
ZIZ

⊤
I |Fn

)
−Wn∥∞

≤∥E
(
ZIZ

⊤
I |Fn

)
−Wn∥∞ + ∥Vn −Wn∥∞

p

≼
s2(log p)11+

1
2r

√
nδmin

= op(1), (B.33)
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where the last inequality applies (B.27) and (B.148). In addition, by Belloni and Oliveira
(2018, Corollary 3.1)

Pr (∥ZI∥∞ > x− ∥NI − ZI∥∞|Fn) =Pr (∥ZI∥∞ > x|Fn) + ∥NI − ZI∥∞Op(
√

log p)

=Pr (∥ZI∥∞ > x|Fn) + op(1),

where the second line applies Proposition B.6. where the first asymptotic equivalence applies
the error bounds of the covariance matrices in Lemma B.12. Therefore,

Pr (∥NI∥∞ > x|Fn) ≤ Pr (∥ZI∥∞ > x− ∥NI − ZI∥∞|Fn)

= Pr (∥ZI∥∞ > x|Fn) + op(1). (B.34)

In a parallel way, we can show that the other side of the inequality in the first line of (B.34),
and therefore

Pr (∥NI∥∞ > x|Fn) = Pr (∥ZI∥∞ > x+ ∥NI − ZI∥∞|Fn) = Pr (∥ZI∥∞ > x|Fn) + op(1).

(B.35)
Then Proposition B.7 follows by (B.33) and (B.35).

B.2.3 Proof of Results in the Main Text

Proof of Theorem 2. Note that uniformly of all x ∈ R,

Pr
(
∥tXD

I ∥∞ > x
)
≤ Pr

(
∥NI∥∞ > x−max

j∈[p]
|Errj,1 + Errj,2|

)
≤ Pr

(
∥ηI∥∞ > x−max

j∈[p]
|Errj,1 + Errj,2|

∣∣∣∣∣Fn

)
+ op(1)

≤ Pr (∥ηI∥∞ > x|Fn) +O

(
max
j∈[p]

|Errj,1 + Errj,2| log p
)
+ op(1)

= Pr (∥ηI∥∞ > x|Fn) + op(1)

where the second inequality applies Proposition B.7, and the third inequality applies Corol-
lary 3.1 of Belloni and Oliveira (2018), and the last step applies Proposition B.5. The other
side of the inequality can be proved in a parallel way. Then (35) is verified. For the second
conclusion, note that the conditional probability, as a random variable, is strictly bounded
in [0, 1]. Then the second conclusion can be verified by taking x = cvG(α) and utilizing the
bounded convergence theorem.
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Proof of Theorem 2. Note that uniformly of all x ∈ R,

Pr
(
∥tXD

I ∥∞ > x
)
≤ Pr

(
∥NI∥∞ > x−max

j∈[p]
|Errj,1 + Errj,2|

)
≤ Pr

(
∥ηI∥∞ > x−max

j∈[p]
|Errj,1 + Errj,2|

∣∣∣∣∣Fn

)
+ op(1)

≤ Pr (∥ηI∥∞ > x|Fn) +O

(
max
j∈[p]

|Errj,1 + Errj,2| log p
)
+ op(1)

= Pr (∥ηI∥∞ > x|Fn) + op(1)

where the second inequality applies Proposition B.7, and the third inequality applies Corol-
lary 3.1 of Belloni and Oliveira (2018), and the last step applies Proposition B.5. The other
side of the inequality can be proved in a parallel way. Then (35) is verified. For the second
conclusion, note that the conditional probability, as a random variable, is strictly bounded
in [0, 1]. Then the second conclusion can be verified by taking x = cvI(α) and utilizing the
bounded convergence theorem.

Proof of Theorem 3. Define jmax = maxj∈I

∣∣∣√n(θ∧γj)(βj − β0,j)
∣∣∣ . Following the proof of The-

orem 2, we can show that the scaled standard error
√
n1+(θ∧γjmax )ω̂XD

jmax,jmax
converges in prob-

ability to a positive constant when γjmax = 0, and converges in distribution to a stable law
when γjmax = 1. Define

Wmax = {
√
n1+(θ∧γjmax )ω̂XD

jmax,jmax
≤ (log |I|)1/4},

and we have Pr(Wmax) → 1 as n → ∞, since |I| → ∞. In addition, under Wmax and when
β∗ ∈ UI(c0),

∥tXD
I ∥∞ ≥ max

j∈I

∣∣∣∣β∗
j − β0,j

ω̂XD
j,j

∣∣∣∣− ∥NI∥∞

≥

∣∣∣∣∣
√
n1+(θ∧γjmax )(β∗

jmax
− β0,jmax)√

n(θ∧γjmax )ω̂XD
jmax,jmax

∣∣∣∣∣− ∥NI∥∞

≥ c0(log |I|)3/4 − ∥NI∥∞.
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Therefore,

Pr
(
∥tXD

I ∥∞ > cvI(α)
)

≥Pr
(
∥tXD

I ∥∞ > cvI(α),Wmax

)
≥Pr

(
c0(log |I|)3/4 > cvI(α) + ∥NI∥∞ +max

j∈[p]
|Errj,1 + Errj,2| ,Wmax

)
≥Pr

(
c0(log |I|)3/4 > cvI(α) + ∥NI∥∞ +max

j∈[p]
|Errj,1 + Errj,2|

)
− Pr(Wc

max)

≥Pr

(
c0(log |I|)3/4 > cvI(α) + ∥ηI∥∞ +max

j∈[p]
|Errj,1 + Errj,2|

∣∣∣∣∣Fn

)
+ op(1)

≥Pr

(
c0(log |I|)3/4 > cvI(α) + ∥ηI∥∞

∣∣∣∣∣Fn

)
+O

(
max
j∈[p]

|Errj,1 + Errj,2| log p
)
+ op(1)

≥Pr
(
∥ηI∥∞ < c0(log |I|)3/4 − cvI(α)|Fn

)
+ op(1).

The bounded convergence theorem applied to the conditional probability implies

Pr
(
∥tXD

I ∥∞ > cvI(α)
)
≥ Pr (∥ηI∥∞ < c0 log |I| − cvG(α)) + o(1). (B.36)

Recall that cvG(α) is the (1 − α)th quantile of a maximum of |I| conditionally normal dis-
tribution with individual variance equaling one. Therefore, if we define

CV = {cvI(α) ≤ C
√

log |I|}

for some sufficiently large absolute constant C, we have Pr(CV) = 1. In addition, by Lemma
6 of Cai et al. (2014),

Pr
(
∥ηI∥2∞ − 2 log |I|+ log log |I| < x|Fn

)
→ exp

(
− 1√

π
exp

(
−x
2

))
.

Taking x = log p, we have

Pr

(
∥ηI∥2∞ < 3 log |I| − log log |I|

∣∣∣∣∣Fn

)
→ 1.

The bounded convergence theorem implies

Pr
(
∥ηI∥2∞ < 3 log |I| − log log |I|

)
→ 1.
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Therefore,

Pr
(
∥ηI∥∞ < c0(log |I|)3/4 − cvG(α)

)
≥ Pr

(
∥ηI∥∞ < c0(log |I|)3/4 − cvG(α), CV

)
≥ Pr

(
∥ηI∥∞ < c0(log |I|)3/4 − C

√
log |I|, CV

)
≥ Pr

(
∥ηI∥∞ < c0(log |I|)3/4 − C

√
log |I|

)
− Pr(CVc)

≥ Pr
(
∥ηI∥∞ <

√
3 log |I| − log log |I|

)
− o(1) → 1.

By (B.36), we have Pr
(
∥tXD

I ∥∞ > cvI(α)
)
→ 1. We complete the proof of Theorem 3.

B.3 Technical Lemmas

B.3.1 Technical Lemmas for Consistency

The lemmas in this section are used in not only the proofs for consistency of Slasso, but also
the asymptotic distribution of the XDlasso. A mildly integrated (MI) instrumental variable
zj,t defined in (21) is involved in the latter. Therefore, the lemmas in this section cover MI
series that are more general than the settings in the main text.

Specifically, we suppose there is an additional group G(2) = {j ∈ [p] : γj = γ(2)}, such
that

xj,t =

(
1 +

c∗j

nγ(2)

)
xj,t−1 + ej,t

for j ∈ G(2). The absolute constant γ(2) ∈ (0, 1) and thus xj,t for any j ∈ G(2) is MI.
The notations G(1) = {j ∈ [p] : γj = 1} and G(0) = {j ∈ [p] : γj = 0} remains their
original meanings in the main text, denoting the index sets for LUR and stationary regressors,
respectively. Define γ(0) = 0 and γ(1) = 1.

Lemma B.1. Under Assumptions 1-5,

sup
j∈G(k),t∈[n]

|xj,t|
p

≼
√
nγ(k)(log p)3/2. (B.37)

Proof of Lemma B.1. For γ(k) = 1, lemma B.1 follows by (B.12) of MS. For γ(k) = 0,
lemma B.1 follows by the sub-exponential tail.

For 0 < γ(k) < 1, we follow the proof of (A.14) of GLMS. Recall that for any j ∈ G(k),
the regressor xj,t is an AR(1) process with the coefficient ρ∗j = 1 − c∗j/n

γj . The sequence
xj,t =

∑t
s=1 ρ

∗s
j ej,t−s is a partial sum of α-mixing sup-exponential components ej,t−s weighted

by ρsj . Also, all regressors in the same group G(k) shares the same degree of persistence
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γj = γ(k). Define
ak,n := ⌊nγ(k)

(log p)2⌋.

Note that ρsjej,t−s is sub-exponential with an exponentially decaying α-mixing coefficient, and
thus ζj,t is the partial sum of t observations from a sub-exponential and α-mixing time series.
By MS24’s Lemma B.2, there exists an absolute constant C such that

sup
j∈G(k)

sup
t≤aj,n

|xj,t|
p

≼
√
ak,n · log p = O

[
nγ(k)/2(log p)3/2

]
. (B.38)

In addition, when t > ak,n,

sup
j∈G(k)

|xj,t| ≤

∣∣∣∣∣∣
∑

s≤ak,n

ρ∗sj ej,t−s

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

ak,n<s≤t

ρ∗sj ej,t−s

∣∣∣∣∣∣ (B.39)

≤

∣∣∣∣∣∣
∑

s≤ak,n

ρ∗sj ej,t−s

∣∣∣∣∣∣+ ρanj

∣∣∣∣∣∣
∑

0<s≤t−ak,n

ρ
∗(s−ak,n)
j ej,t−s+ak,n

∣∣∣∣∣∣ .
By the same arguments for (B.38), we bound the two sums on the right-hand side of (B.39)
by

sup
j∈G(k)

sup
ak,n<t≤n

∣∣∣∣∣∣
∑

s≤ak,n

ρ∗sj ej,t−s

∣∣∣∣∣∣ p

≼ nγ(k)/2(log p)3/2, (B.40)

and

sup
j∈G(k)

sup
ak,n<t≤n

∣∣∣∣∣∣
∑

0<s≤t−ak,n

ρ
∗(s−ak,n)
j ej,t−s+ak,n

∣∣∣∣∣∣ p

≼
√

(n− ak,n) · log p. (B.41)

Besides, under the assumption p ≥ nν1 , the sequence

sup
j∈G(k)

ρ
ak,n
j =

(
1 + c∗j/n

γ(k)
)⌊nγ(k) (log p)2⌋

= O
(
exp

(
−|c∗j |(log p)2

))
= O

(
p−c log p

)
(B.42)

converges to zero faster than the reciprocal of any polynomial function of n. Thus, by (equa-
tion (B.41)) and (equation (B.42)),

sup
j∈G(k)

sup
ak,n<t≤n

ρ
ak,n
j

∣∣∣∣∣∣
∑

0<s≤t−ak,n

ρ
s−ak,n
j ej,t−s+ak,n

∣∣∣∣∣∣ p

≼ p−c log p ·
√
(n− an) · log p (B.43)

= o
(
nτ/2(log p)3/2

)
.
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By (B.39), (B.40), and (B.43), we have

sup
j∈G(k)

sup
ak,n<t≤n

|xj,t|
p

≼ Cnγ(k)/2(log p)3/2, (B.44)

and then (B.37) follows by (B.38) and (B.44). We complete the proof of lemma B.1.

Lemma B.2. Under Assumptions 1-5,

max
j∈G(k),ℓ∈[p]

∣∣∣∣∣ 1n
n∑

t=1

(xj,t−1eℓ,t − E(xj,t−1eℓ,t))

∣∣∣∣∣ p

≼
(log p)2+

1
2r

√
n1−γ(k)

. (B.45)

In addition, when x
(k)
t is MI with 0 < γ(k) < 1, we have

max
j∈G(k),ℓ∈[p]

∣∣∣∣∣ 1n
n∑

t=1

(xj,t−1eℓ,t − Λj,ℓ)

∣∣∣∣∣ p

≼
(log p)

2
r

nγ(k)
+

(log p)2+
1
2r

√
n1−γ(k)

, (B.46)

where Λj,ℓ =
∑∞

d=1 E(ej,teℓ,t−d).

Proof of Lemma B.2. We first show (B.45). Let G = ⌊(2c−1
α log(np))1/r⌋. Notice we have

the following decomposition

n∑
t=1

xj,t−1eℓ,t =
G∑
t=1

xj,t−1eℓ,t +
n∑

t=G+1

eℓ,t

t−1∑
r=t−G+1

ρ∗t−1−r
j ej,r + ρ∗G−1

j

n∑
t=G+1

xj,t−Geℓ,t. (B.47)

Therefore,
n∑

t=1

(xj,t−1eℓ,t − E(xj,t−1eℓ,t)) = T
(j,ℓ)
1,n + T

(j,ℓ)
2,n + T

(j,ℓ)
3,n + T

(j,ℓ)
4,n ,

where

T
(j,ℓ)
1,n =

G∑
t=1

xj,t−1eℓ,t,

T
(j,ℓ)
2,n =

n∑
t=G+1

eℓ,t

t−1∑
r=t−G+1

ρ∗t−1−r
j ej,r − E

(
n∑

t=G+1

eℓ,t

t−1∑
r=t−G+1

ρ∗t−1−r
j ej,r

)
,

T
(j,ℓ)
3,n = ρ∗G−1

j

n∑
t=G+1

xj,t−Geℓ,t,

T
(j,ℓ)
4,n =

n∑
t=1

E(xj,t−1eℓ,t)− E

(
n∑

t=G+1

eℓ,t

t−1∑
r=t−G+1

ρ∗t−1−r
j ej,r

)
.

Define Ti = maxj∈G(k),ℓ∈[p] T
(j,ℓ)
i,n for i ∈ {1, 2, 3, 4}. We analyze one by one the four terms.
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Bound T1. Note that maxℓ∈[p] |
∑G

t=1(|eℓ,t| − E|eℓ,t|)|
p

≼
√
G log p by the bound of the

partial sum of weakly dependent time series. We deduce by the triangular inequality

T1 ≤ max
j∈G(k)

|xj,t−1| ·max
ℓ∈[p]

G∑
t=1

|eℓ,t|

p

≼
√
nγ(k)(log p)3

[
max
ℓ∈[p]

∣∣∣∣∣
G∑
t=1

(|eℓ,t| − E|eℓ,t|)

∣∣∣∣∣+max
ℓ∈[p]

G∑
t=1

E|eℓ,t|

]
p

≼
√
nγ(k)(log p)3

(√
G log p+G

)
= o(n

1+γ(k)

2 ), (B.48)

where the second row applies Lemma B.1.
Bound T2. Note that

T2 = max
j∈G(k),ℓ∈[p]

∣∣∣∣∣
n∑

t=G+1

eℓ,t

t−1∑
r=t−G+1

ρ∗t−1−r
j ej,r − E

(
n∑

t=G+1

eℓ,t−1

t−1∑
r=t−G+1

ρ∗t−1−r
j ej,r

)∣∣∣∣∣
≤ max

j∈G(k),ℓ∈[p]

G−1∑
d=1

∣∣∣∣∣
n∑

t=G+1

ρ∗d−1
j (eℓ,tej,t−d − E(eℓ,tej,t−d))

∣∣∣∣∣ . (B.49)

Note that for any t ∈ [n]

ρ∗tj ≤
(
1 +

c̄

n

)n
≤ ec̄, (B.50)

where c̄ > 0 is an absolute constant specified in Assumption 5. Therefore, ρ∗d−1
j ej,t−d is a

stationary and strongly mixing sequence. By the same arguments to bound “T22” on Page 8
of the online appendix to MS, we have

T2 = Op(G
2
√
n log(p2G2)) = o(n

1+γ(k)

2 ).

Bound T3. Following the procedures to bound “T3” starting from Page 9 of the online
appendix to MS, we can show

T3
p

≼
√
n1+γ(k)(log p)2+

1
2r .

We only need to change the event Xt = {maxj∈[px] |Xjt| ≤ CX

√
n log p} below (B.16) of MS

into X (k)
t = {maxj∈[px] |Xjt| ≤ CX

√
nγ(k)(log p)3}, which is a high-probability event in view

of (B.1).
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Bound T4. By the decomposition (B.47), we have

T4 = max
j∈G(k),ℓ∈[p]

∣∣∣∣∣
n∑

t=1

E(xj,t−1eℓ,t)− E

(
n∑

t=G+1

eℓ,t

t−1∑
r=t−G+1

ρ∗t−1−r
j ej,r

)∣∣∣∣∣
= max

j∈G(k),ℓ∈[p]

∣∣∣∣∣E
(

G∑
t=1

xj,t−1eℓ,t

)
+ E

(
n∑

t=G+1

xj,t−Geℓ,t

)∣∣∣∣∣ . (B.51)

Note that E(ej,seℓ,t−1) is uniformly bounded for any j, ℓ ∈ [p] and s, t ∈ [n]. Therefore, by
the fact that E(ej,seℓ,t−1) = O(1) uniformly for all j, ℓ ∈ [p] and s, t ∈ [n], we have∣∣∣∣∣E

(
G∑
t=1

xj,t−1eℓ,t

)∣∣∣∣∣ =
G∑
t=1

t−1∑
s=0

ρ∗t−1−s
j |E(ej,seℓ,t)|

≤ ec̄
G∑
t=1

t−1∑
s=0

|E(ej,seℓ,t)| = O(G2), (B.52)

where the second row applies (B.50). In addition,∣∣∣∣∣E
(

n∑
t=G+1

xj,t−Geℓ,t

)∣∣∣∣∣ =
∣∣∣∣∣

n∑
t=G+1

t−G∑
s=1

ρ∗sj E (ej,t−G−seℓ,t)

∣∣∣∣∣ (B.53)

To bound the right-hand side of (B.53), define the ρ-mixing coefficients of two generic σ-fields
A and B as

ρ(A,B) := sup
X∈A,Y ∈B

|EXY − EXEY |
/√

EX2EY 2 for EX2,EY 2 <∞. (B.54)

For d ∈ N, the ρ-mixing coefficients of e = (et)t∈Z is defined as

ρ(d) := sup
s∈Z

ρ(σ((et)t≤s), σ((et)t≥s+d)), (B.55)

where σ((et)t≤s) is the σ-filed generated by (et)t≤s. By (B.4) of MS andG = ⌊(2c−1
α log(np))1/r⌋,

ρ(G) ≤ Cα exp(−cαGr)

≤ Cα exp(−2 log(np)) = O((np)−2).

Therefore,

|E (ej,t−G−seℓ,t−1)| ≤ ρ(G)
√

E
(
e2j,t−G−s

)
E
(
e2j,t−G−s

)
= O((np)−2)
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uniformly for all j, ℓ ∈ [p] and s, t ∈ [n]. Then by (B.53),

∣∣∣∣∣
n∑

t=G+1

t−G∑
s=1

ρ∗sj E (ej,t−G−seℓ,t)

∣∣∣∣∣ ≤ ec̄

∣∣∣∣∣
n∑

t=G+1

t−G∑
s=1

E (ej,t−G−seℓ,t)

∣∣∣∣∣
= O(n2 · (np)−2) = o(1). (B.56)

By (B.51), (B.52), and (B.56),

T4 = O(G2). (B.57)

where the second row applies Collecting the stochastic order of T1, T2, T3, and T4, we have

max
j∈G(k),ℓ∈[p]

∣∣∣∣∣ 1n
n∑

t=1

(xj,t−1eℓ,t − E(xj,t−1eℓ,t))

∣∣∣∣∣ ≤T1 + T2 + T3 + T4
n

=
op(n

1+γ(k)

2 ) + op(n
1+γ(k)

2 ) + T3 +O(G2)

n
p

≼
(log p)2+

1
2r

√
n1−γ(k)

.

We complete the proof of (B.46).
We then show (B.46). It suffices to show

max
j∈G(k),ℓ∈[p]

∣∣∣∣∣ 1n
n∑

t=1

(E(xj,t−1eℓ,t)− Λℓ,j)

∣∣∣∣∣ = O

(
(log p)

2
r

nγ(k)

)
. (B.58)

Note that

max
j∈G(k),ℓ∈[p]

∣∣∣∣∣ 1n
n∑

t=1

(E(xj,t−1eℓ,t)− Λℓ,j)

∣∣∣∣∣ ≤ T4 + max
j∈G(k),ℓ∈[p]

∣∣∣∣∣E
(
1

n

n∑
t=G+1

eℓ,t

t−1∑
s=t−G+1

ρ∗t−1−s
j ej,s

)
− Λℓ,j

∣∣∣∣∣
=O(G2) + max

j∈G(k),ℓ∈[p]

∣∣∣∣∣E
(
1

n

n∑
t=G+1

eℓ,t

t−1∑
s=t−G+1

ρ∗t−1−s
j ej,s

)
− Λℓ,j

∣∣∣∣∣ ,
(B.59)

where the second step applies T4 = O(G2) by (B.57). The terms inside the absolute value
operator of the second term can be further decomposed as
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E

(
1

n

n∑
t=G+1

eℓ,t

t−1∑
s=t−G+1

ρ∗t−1−s
j ej,s

)
− Λℓ,j =

1

n

n∑
t=G+1

t−1∑
s=t−G+1

(ρ∗t−1−s
j − 1)E (eℓ,tej,s)

+
1

n

n∑
t=G+1

t−1∑
s=t−G+1

E (eℓ,tej,s)− Λℓ,j. (B.60)

The first term on the right-hand side of (B.60) is bounded by

max
j∈G(k),ℓ∈[p]

∣∣∣∣∣ 1n
n∑

t=G+1

t−1∑
s=t−G+1

(ρ∗t−1−s
j − 1)E (eℓ,tej,s)

∣∣∣∣∣ = O

(
max
t∈[n]

t−1∑
s=t−G+1

∣∣ρ∗t−1−s
j − 1

∣∣)

= O

(
max
t∈[n]

G−2∑
d=1

∣∣ρ∗dj − 1
∣∣) (B.61)

where the first line applies the uniform bound of E (eℓ,t−1ej,s). For any 1 ≤ d ≤ G − 2 and
j ∈ G(k),

|ρ∗dj − 1| =
|c∗j |
nγj

· |ρ∗d−1
j + · · ·+ ρ∗j + 1| = O(G/nγ(k)

)

where the last step applies (B.50). Then by (B.61),

max
j∈G(k),ℓ∈[p]

∣∣∣∣∣ 1n
n∑

t=G+1

t−1∑
s=t−G+1

(ρ∗t−1−s
j − 1)E (eℓ,tej,s)

∣∣∣∣∣ = O(G2/nγ(k)

), (B.62)

which bounds the first term on the right-hand side of (B.60). For the second term,∣∣∣∣∣ 1n
n∑

t=G+1

t−1∑
s=t−G+1

E (eℓ,tej,s)− Λℓ,j

∣∣∣∣∣ ≤ 1

n

∣∣∣∣∣
n∑

t=G+1

(
t−1∑

s=t−G+1

E (eℓ,tej,s)− Λℓ,j

)∣∣∣∣∣+ (1− n−G

n
)|Λℓ,j|

=
1

n

n∑
t=G+1

∞∑
d=G

|E (eℓ,tej,t−d)|+O(G/n). (B.63)

Recall the definition of ρ-mixing coefficient in (B.54) and (B.55). By (B.4) of MS and
G = ⌊(2c−1

α log(np))1/r⌋,

∞∑
d=G

|E (eℓ,tej,t−d)| ≤
√

E(e2ℓ,t)E(e2j,t−d)
∞∑

d=G

ρ(d) = O

(
∞∑

d=G

exp(−cαdr)

)
= O (exp(−cαGr/2))

= O((np)−1),
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where the second row applies (B.78) in MS. By (B.63),∣∣∣∣∣ 1n
n∑

t=G+1

t−1∑
s=t−G+1

E (eℓ,tej,s)− Λℓ,j

∣∣∣∣∣ = O(G/n) +O((np)−1) = O(G/n), (B.64)

which bounds the second term on the right-hand side of (B.60). By (B.62) and (B.64),

max
j∈G(k),ℓ∈[p]

∣∣∣∣∣E
(
1

n

n∑
t=G+1

eℓ,t

t−1∑
s=t−G+1

ρ∗t−1−s
j ej,s

)
− Λℓ,j

∣∣∣∣∣ p

≼ O(G2/nγ(k)

) +O(G/n)

= O(G2/nγ(k)

) = O((log p)
2
r /nγ(k)

).

(B.65)

Thus, (B.58) is implied by (B.59) and (B.65). We complete the proof of (B.46) and end the
proof of Lemma B.2.

Lemma B.3. Under Assumptions 1-5, when 0 ≤ γ(k) < 1,∥∥∥∥∥ 1n
n∑

t=1

x
(k)
t−1e

(k)⊤
t−1

∥∥∥∥∥
∞

p

≼ 1. (B.66)

when γ(k) = 1, we have ∥∥∥∥∥ 1n
n∑

t=1

x
(k)
t−1e

(k)⊤
t−1

∥∥∥∥∥
∞

p

≼ (log p)1+
1
2r . (B.67)

Proof of Lemma B.2. For stationary and MI regressors with 0 ≤ γ(k) < 1, (B.66) is a direct
corollary of Lemma B.2. For LUR regressors with γ(k) = 1, (B.67) is deduced in the proof of
MS24’s Theorem 3.

Lemma B.4. x Under Assumptions 1-5,

∥n−1

n∑
t=1

x
(k)
t−1x

(m)⊤
t−1 ∥∞

p

≼ n(γ(k)∧γ(m))(log p)1+
1
2r .

Proof of Lemma B.4. For any j ∈ G(k) and ℓ ∈ G(m),

xj,t−1xℓ,t = ρ∗ℓxj,t−1xℓ,t−1 + xj,t−1eℓ,t.

By xj,txℓ,t = ρ∗jxj,t−1xℓ,t + ej,txℓ,t, we obtain

xj,txℓ,t = ρ∗j (ρ
∗
ℓxj,t−1xℓ,t−1 + xj,t−1eℓ,t) + ej,txℓ,t. (B.68)
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Summing up both sides of (B.68) and using the fact that
∑n

t=1 xj,txℓ,t =
∑n

t=1 xj,t−1xℓ,t−1 −
xj,0xℓ,0 + xj,nxℓ,n, we deduce

n∑
t=1

xj,t−1xℓ,t−1 − xj,0xℓ,0 + xj,nxℓ,n = ρ∗j

(
ρ∗ℓ

n∑
t=1

xj,t−1xℓ,t−1 +
n∑

t=1

xj,t−1eℓ,t

)
+

n∑
t=1

ej,txℓ,t.

It can be further arranged into

(1− ρ∗jρ
∗
ℓ)

n∑
t=1

xj,t−1xℓ,t−1 = (xj,0xℓ,0 − xj,nxℓ,n) + ρ∗j

n∑
t=1

xj,t−1eℓ,t +
n∑

t=1

ej,txℓ,t. (B.69)

By (B.1),

sup
j∈G(k)

sup
ℓ∈G(m)

|xj,0xℓ,0 − xj,nxℓ,n|
p

≼ n
γ(k)+γ(m)

2 (log p)3. (B.70)

By (B.66) and the fact that |ρ∗j | ≤ 2,

sup
j∈G(k)

sup
ℓ∈G(m)

(∣∣∣∣∣ρ∗j
n∑

t=1

xj,t−1eℓ,t

∣∣∣∣∣+
∣∣∣∣∣

n∑
t=1

ej,txℓ,t

∣∣∣∣∣
)

p

≼ n(log p)1+
1
2r . (B.71)

By (B.69), (B.70), and (B.71),

sup
j∈G(k),ℓ∈G(m)

∣∣∣∣∣(1− ρ∗jρ
∗
ℓ)

n∑
t=1

xj,t−1xℓ,t−1

∣∣∣∣∣
≤ sup

j∈G(k),ℓ∈G(m)

|xj,0xℓ,0 − xj,nxℓ,n|+ sup
j∈G(k),ℓ∈G(m)

(∣∣∣∣∣ρ∗j
n∑

t=1

xj,t−1eℓ,t

∣∣∣∣∣+
∣∣∣∣∣

n∑
t=1

ej,txℓ,t

∣∣∣∣∣
)

p

≼ n
γ(k)+γ(m)

2 (log p)2 + n(log p)1+
1
2r

≤2n(log p)1+
1
2r .

Thus,

sup
j∈G(k),ℓ∈G(m)

∣∣∣∣∣
n∑

t=1

xj,t−1xℓ,t−1

∣∣∣∣∣ p

≼
n(log p)1+

1
2r

infj∈G(k),ℓ∈G(m)(1− ρ∗jρ
∗
ℓ)

= O(n1+γ(m)∧γ(ℓ)

(log p)1+
1
2r ),

when the second inequality applies the fact that

1− ρ∗jρ
∗
ℓ =

|c∗j |
nγ(k)

+
|c∗ℓ |
nγ(m)

−
c∗jc

∗
ℓ

nγ(k)+γ(m)
= O(n−(γ(m)∧γ(ℓ)))
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when j ∈ G(k), ℓ ∈ G(m). This completes the proof of Lemma B.4.

Lemma B.5. Suppose that (1 + Cm(L))s = o(n ∧ p) as n → ∞, and k = 1. Define Σ̈(1) =

n−1
∑n

t=1(xt−1 − x̄)(xt−1 − x̄)⊤. Then under Under Assumptions 1-5,

κI(Σ̈
(1), L, s)

n
≥ cκ
L2s log p

(B.72)

holds w.p.a.1. for any L ≥ 1.B.2

Proof of Lemma B.5. In this proof only, we simplify the notations x(1)t and e(1)t as xt and et,
given there is no ambiguity that we focus on the LUR case. Also, we simplify Σ̈(1) as Σ̈.

(a) We first impose the normality assumption εt ∼ i.i.d. N (0, Ip). It implies
et ∼ i.i.d. N (0,Ωe) with Ωe = ΦeΦ

⊤
e . Note that for the LUR cases,

xt − xt−1 =
C

n
xt−1 + et

for any t ≥ 1, where C = C(k). Define

e∆t =


C

n
xt−1 + et, t ≥ 1,

0, t = 0,

and note that xt =
∑t

s=1 e
∆
s . Let R be an n × n lower triangular matrix of ones on and

below the diagonal. Define X = (x0, x1, . . . , xn−1)
⊤, e = (e0, e1, . . . , en−1)

⊤ and e∆ =

(e∆0 , e
∆
1 , . . . , e

∆
n−1)

⊤. Note that X
(n×p)

= R
(n×n)

e∆
(n×p)

. We decompose we write

Σ̈ = n−1X⊤X = n−1e∆⊤R⊤Re∆.

Define Jn = n−11n1
⊤
n . Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 and λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n ≥ 0 be the

eigenvalues of R⊤(In − Jn)R and R⊤R, respectively, ordered from large to small.
Let µℓ be the ℓth largest singular value of the idempotent matrix In−Jn. Recall 1 (·) is the

indicator function, and obviously µℓ = 1(1 ≤ ℓ ≤ n−1) for ℓ ∈ [n]. Denote the ℓth eigenvalue
values of R⊤(In − Jn)R and R⊤R be λℓ and λ̃ℓ, respectively. When ℓ ∈ [n − 1], the first
inequality of Eq.(15) in Merikoski and Kumar (2004, Theorem 9) gives λℓ ≥ λ̃ℓ+1µn−1 = λ̃ℓ+1.

Following the technique used to prove Remark 3.5 in Zhang et al. (2019), which is
also used for Theorem B.2 in Smeekes and Wijler (2021), we diagonalize R(In − Jn)R

⊤ =

V diag(λ1, λ2, · · · , λn)V ⊤, where V is an orthonormal matrix. For any δ ∈ Rp, δ ̸= 0, the
B.2Here we use a generic L ≥ 1 is useful for deducing the lower bound of κ̂D using κ̂I .
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quadratic form

δ⊤Σ̈δ =
1

n
e∆⊤R⊤Re∆ =

1

n
δ⊤e∆⊤V diag(λ1, λ2, · · · , λn)V ⊤e∆δ

≥ 1

n
δ⊤e∆⊤V·[ℓ]diag(λ1, · · · , λℓ)V ⊤

·[ℓ]e
(n)δ ≥ λℓ

n
δ⊤e∆⊤V·[ℓ]V

⊤
·[ℓ]e

∆δ

≥ ℓλ̃ℓ+1

n
· δ⊤Γ∆

ℓ δ (B.73)

for any ℓ ∈ [n − 1], where V·[ℓ] is the submatrix composed of the first ℓ columns of V and
Γℓ = ℓ−1e∆⊤V·[ℓ]V

⊤
·[ℓ]e

∆.
We first work with the first factor ℓλℓ/n in (B.73). Smeekes and Wijler (2021) provide

the exact formula of λℓ:

λ̃ℓ+1 =

[
2

(
1− cos

(
(2ℓ+ 1)π

2n+ 1

))]−1

for all ℓ ∈ [n]. (B.74)

A Taylor expansion of cos (xπ) around x = 0 yields

λ̃ℓ+1 =

(
(2ℓ+ 1)π

2n+ 1

)2(
1 + o

(
ℓ+ 1

n

))
=

(
ℓπ

n

)2(
1 + o

(
ℓ

n

))
whenever ℓ = o (n). This implies

ℓλ̃ℓ+1

n
=

n

π2ℓ (1 + o (ℓ/n))
≥ n

2π2ℓ
(B.75)

for ℓ = o (n) when n is sufficiently large.
Next, we focus on the second factor δ⊤Γ∆

ℓ δ in (B.73). DefineXL := (0p, X0, X1, · · · , Xt−2)
⊤ .

By definition, we have

e∆ = XL
C

n
+ e.

We deduce that

δ⊤Γ∆
ℓ δ =

δ⊤e⊤V·[ℓ]V
⊤
·[ℓ]eδ

ℓ
+
δ⊤CX⊤

L V·[ℓ]V
⊤
·[ℓ]XLC

⊤δ

n2ℓ
+

2δ⊤CX⊤
L V·[ℓ]V

⊤
·[ℓ]eδ

nℓ

≥
δ⊤e⊤V·[ℓ]V

⊤
·[ℓ]eδ

ℓ
+

2δ⊤CX⊤
L V·[ℓ]V

⊤
·[ℓ]eδ

nℓ
.

Recall the generic inequality 2x⊤y ≤ x⊤x+y⊤y for any vectors x and y of the same dimension.
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Let x =
V ⊤
·[ℓ]eδ√
2

and y =
√
2n−1CX⊤

L V·[ℓ]V
⊤
·[ℓ]eδ, we have

2δ⊤CX⊤
L V·[ℓ]V

⊤
·[ℓ]eδ

n
≤ 0.5δ⊤e⊤V·[ℓ]V

⊤
·[ℓ]eδ +

2CX⊤
L V·[ℓ]V

⊤
·[ℓ]XLC

⊤

n2
.

It implies

δ⊤Γ∆
ℓ δ ≥

0.5δ⊤e⊤V·[ℓ]V
⊤
·[ℓ]eδ

ℓ
−

2δ⊤CX⊤
L V·[ℓ]V

⊤
·[ℓ]XLCδ

n2ℓ
.

In addition, λmax(V·[ℓ]V
⊤
·[ℓ]) ≤ ∥V·[ℓ]∥22 ≤ 1, where the second inequality applied the fact that

V is a unitary matrix. Therefore,

δ⊤Γ∆
ℓ δ ≥

0.5δ⊤e⊤V·[ℓ]V
⊤
·[ℓ]eδ

ℓ
− 2δ⊤CX⊤

LXLCδ

n2ℓ

=
0.5δ⊤e⊤V·[ℓ]V

⊤
·[ℓ]eδ

ℓ
−

2δ⊤C
∑n−1

t=1 Xt−1X
⊤
t−1Cδ

n2ℓ

≥
0.5δ⊤e⊤V·[ℓ]V

⊤
·[ℓ]eδ

ℓ
−

2δ⊤C
∑n

t=1Xt−1X
⊤
t−1Cδ

n2ℓ

≥
0.5δ⊤e⊤V·[ℓ]V

⊤
·[ℓ]eδ

ℓ
− 2δ⊤CΣ̂Cδ

nℓ
. (B.76)

Define Γℓ =
δ⊤e⊤V·[ℓ]V

⊤
·[ℓ]eδ

ℓ
. By (B.73) and (B.76),

δ⊤Σ̈δ ≥ n

2π2ℓ

(
0.5δ⊤Γℓδ − 2n−1ℓ−1δ⊤CΣ̂Cδ

)
. (B.77)

We first lower bound the first term. Let ℓ = (16 + Cℓ) · (s +m) log p for some Cℓ > 0 to be
determined later. Following the proof of (B.43) in MS24 utilizing the non-asymptotic bounds
for Whishart matrices, we have

δ⊤Γℓδ ≥ Cκ∥δ∥22, (B.78)

w.p.a.1, where the absolute constant Cκ not dependent on L or Cℓ. We then bound the second
term. Note that for any δ ∈ R(L, s) such that for any |M| ≤ s we have ∥δMc∥1 ≤ L∥δM∥1,

∥δ∥1 ≤ ∥δM∥1 + ∥δMc∥1 ≤ (1 + L)∥δM∥1 ≤ (1 + L)
√
s∥δ∥2. (B.79)

Therefore,

δ⊤CΣ̂C⊤δ ≤ (∥δ∥1)2 · ∥C∥21 · ∥Σ̂∥∞ ≤ (1 + L)2s∥δ∥22 · ∥C∥21 · ∥Σ̂∥∞.
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By (B.4) for LURs,
∥Σ̂∥2∞ ≤ max

j,t
|xj,t−1|2 ≤ Csupn log p

w.p.a.1 for some absolute constant Csup. Therefore,

δ⊤CΣ̈C⊤δ ≤ (1 + L)2s∥δ∥22 · ∥C∥21 · ∥Σ̂∥∞
≤ (1 + L)2s∥δ∥22 · 22 · Csupn log p

≤ 16L2 · s∥δ∥22 · Csupn log p,

where the second inequality applies ∥C∥1 ≤ supj∈[p] |ρ∗j | ≤ 2, and the third inequality applies
L ≥ 1 and ∥δS∥1 ≤

√
s∥δ∥2. Recall that ℓ = (16 + Cℓ) · (s+m) log p. Let Cℓ = 64 · (1 ∨ (L ·

Csup))− 16. Then

δ⊤CΣ̈C⊤δ ≤ ∥δ∥22 ·
16L · Csup

Cκ

s · n log p ≤ ∥δ∥22 · 0.25Cκnℓ. (B.80)

Insert (B.78) and (B.80) into (B.77), we have

δ⊤Σ̈δ ≥ n

2π2ℓ
(0.5Cκ − 0.25Cκ) ∥δ∥22 =

nCκ

8π2ℓ
∥δ∥22.

By ℓ = (16 + Cℓ) · (s+m) log p, m = ⌈4LC̃/c̃⌉s, and L ≥ 1

δ⊤Σ̂δ

n∥δ∥22
≥ Cκ

8π2(16 + Cℓ) · (s+m) log p

≥ Cκ

8π2(16 + Cℓ) · (1 + ⌈4LC̃/c̃⌉)s log p
(B.81)

≥ Cκ

8π2 · 64(1 ∨ (L · Csup)) · (2C̃/c̃) · 8L · s log p

≥ Cκ

8π2 · 64Csup · (2C̃/c̃) · 8L2 · s log p

w.p.a.1. Then (B.72) holds with c̃κ = c̃ · Cκ/[8π
2 · 64Csup · 2C̃ · 8].

(b) We then extend the result to non-normal errors. Recall that

xj,t =
t∑

s=1

ρt−s
j ej,s =

p∑
k=1

Φj,k

t∑
s=1

ρt−s
j εk,s.

The random component
∑t

s=1 ρ
t−s
j εk,s is a partial sum of α-mixing variables, and εk,s is

independent of εj,t whenever k ̸= j. Also note that ρt−s
j . Following the technique of By the
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Gaussian approximation, there exists a sequence of Brownian motion such that

sup
j∈[p],t∈[n]

1√
n

∣∣∣∣∣
t−1∑
s=0

ρt−s
j εj,s −

t−1∑
s=0

ρt−s
j ηj,s

∣∣∣∣∣ p

≼
log p

n1/4
.

Define ξj,t =
∑t

s=1 ρ
t−s
j ηj,s satisfying ξj,t = ρjξj,t−1 + ηj,s Therefore,

sup
j∈[p],t∈[n]

|xj,t − ξj,t| ≤ sup
j∈[p]

∣∣∣∣∣
p∑

k=1

Φj,k

∣∣∣∣∣ ·
∣∣∣∣∣
t−1∑
s=0

ρt−s
j εj,s −

t−1∑
s=0

ρt−s
j ηj,s

∣∣∣∣∣ = Op

(
n1/4 log p

)
. (B.82)

Let Ϋ = n−1
∑n

t=1(ξt−1 − ξ̄)(ξt−1 − ξ̄)⊤.

δ⊤Σ̈δ ≥ δ⊤Ϋδ −
∣∣∣δ⊤(Σ̈− Ϋ)δ

∣∣∣ (B.83)

Notice that Υ̂ is the Gram matrix of the LUR processes ζt with normally distributed errors.
The procedures as in Part (a) bounds the first term on the right-hand side of the above
expression

δ⊤Ϋδ ≥ c′κ
L2s log p

n∥δ∥22 (B.84)

w.p.a.1 for some absolute constant c′κ. We move on to the second term∣∣∣δ⊤(Σ̂− Υ̂)δ
∣∣∣ ≤ ∥δ∥21∥Σ̈− Ϋ∥∞ ≤ (1 + L)2s∥δ∥22∥Σ̈− Ϋ∥∞

≤ 4L2s∥δ∥22∥Σ̈− Ϋ∥∞ (B.85)

whenever L ≥ 1. Since Xt =
∑t

s=0 es = Φe

∑t
s=0 εs = Φeξt−1, it follows that

∥Σ̈− Ϋ∥∞ ≤ C2
L

(
∥n−1

n∑
t=1

(xt−1x
⊤
t−1 − ζt−1ζ

⊤
t−1)∥∞ + ∥x̄x̄⊤ − ξ̄ξ̄⊤∥∞

)
.

Following the proof of Part (b) in Proposition MS24, we can show under (B.82) that

∥Σ̈− Ϋ∥∞ = Op

(
n3/4+ν′

√
log p

)
for any arbitrary small absolute value ν ′. Inserting the above expression into (B.85), we have

|δ⊤(Σ̈− Ϋ)δ|
n∥δ∥22

≤ 4L2s ·Op

(
n−1/4+ν′

√
log p

)
= op

(
L−2

s log p

)
(B.86)

given the condition s2L4(log p)3/2 = o(n1/4−ν′) in the Proposition. (B.84) and (B.86) then
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provide

δ⊤Σ̈δ

n∥δ∥22
≥ c′κ
L2s log p

− op

(
L−2

s log p

)
≥ cκ
L2s log p

w.p.a.1 when n is large enough, where cκ = 0.5c′κ.

Define the long-run covariance Ω(1) =
∑∞

d=−∞ E(e(1)t−de
(1)⊤
t ), and

Σ(1) =

∫ ∞

−∞
eτC

(1)

Ω(1)eτC
(1)

dτ.

Also, recall that Σ(0) = E(x(0)t x
(0)⊤
t ).

Proposition B.8. Under Assumptions 1-5, for k = 0

1

nθ∧k ∥Σ̂
(k) − Σ(k)∥∞

p

≼
(log p)3+

2
r

nθ
1{k = 1}+ (log p)3+

1
2r

√
n1−θ∧k

. (B.87)

Therefore, there exists a absolute constant c(0)κ such that

κI(Σ̂
(0), 3, s) ≥ c(0)κ (B.88)

w.p.a.1.

Proof of Proposition B.8. When k = 0, i.e. x(k)t is stationary, (B.87) follows standard con-
centration inequalities for weakly dependent time series, like (B.30) in MS.

When k = 1, define R(1) = diag({ρ∗j}j∈G(1)), and K(1) as the p21× p21 commutation matrix.
We follow Magdalinos and Phillips (2009) to decompose vec(Σ̂(1)) as

(Ip2k −R(1) ⊗R(1))vec(Σ̂(1))

=
1

n

(
vec(x(1)n x(1)⊤n )−R(1) ⊗R(1)vec(x

(1)
0 x

(1)⊤
0 )

)
+ (Ip2k +K(1))(Ipk ⊗R(1))

1

n

n∑
t=1

vec(x
(1)
t−1e

(1)⊤
t ) +

1

n

n∑
t=1

vec(e
(1)
t e

(1)⊤
t ).

71



By Ip2k −R(1) ⊗R(1) = −n−θ(Ipk ⊗C(1) +C(1) ⊗ Ipk)− n−2θC(1) ⊗C(1), we further deduce

− (Ipk ⊗C(1) +C(1) ⊗ Ipk)
vec(Σ̂(1))

nθ

=
1

n

(
vec(x(1)n x(1)⊤n )−R(1) ⊗R(1)vec(x

(1)
0 x

(1)⊤
0 )

)
+

C(1) ⊗C(1)

n2θ
vec(Σ̂(1))

+ (Ip2k +K(1))(Ipk ⊗R(1))
1

n

n∑
t=1

vec(x
(1)
t−1e

(1)⊤
t ) +

1

n

n∑
t=1

vec(e
(1)
t e

(1)⊤
t ). (B.89)

By Lemma B.1,

∥ 1
n

(
vec(x(1)n x(1)⊤n )−R(1) ⊗R(1)vec(x

(1)
0 x

(1)⊤
0 )

)
∥∞

p

≼
(log p)3

n1−θ
, (B.90)

and

∥C
(1) ⊗C(1)

n2θ
vec(Σ̂(1))∥∞

p

≼
nθ(log p)3

n2θ
=

(log p)3

nθ
. (B.91)

Define Λ(1) =
∑∞

d=0 e
(1)
t e

(1)⊤
t−d . By (B.46) in Lemma B.3,

∥(Ip2k +K(1))(Ipk ⊗R(1))
1

n

n∑
t=1

vec(x
(1)
t−1e

(1)⊤
t − Λ(1))∥∞

p

≼
(log p)

2
r

nθ
+

(log p)2+
1
2r

√
n1−θ

. (B.92)

By standard concentration inequalities for stationary time series like (B.30) in MS,

∥ 1
n

n∑
t=1

vec(e
(1)
t e

(1)⊤
t − Ω(1))∥∞

p

≼

√
log p

n
, (B.93)

where Ω(1) = E(e(1)t e
(1)⊤
t ). Therefore, by (B.89), (B.90), (B.91), (B.92), and (B.93) we have

−(Ipk⊗C(1)+C(1)⊗Ip1)
vec(Σ̂(1))

nγ(1)
= (Ip21+K(1))(Ip1⊗R(1))vec(Λ(1))+vec(Ω(1))+g1,n, (B.94)

where

∥g1,n∥∞
p

≼
(log p)3

n1−θ
+

(log p)3

nθ
+

(log p)
2
r

nθ
+

(log p)2+
1
2r

√
n1−θ

+

√
log p

n

= O

(
(log p)3+

2
r

nθ
+

(log p)3+
1
2r

√
n1−θ

)
. (B.95)

In addition,
(Ip2k +K(1))(Ipk ⊗R(1))vec(Λ(1)) = vec(Λ(1) + Λ(1)⊤) + g2,n (B.96)
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where
∥g2,n∥∞ = ∥(Ip2k +K(1))(Ipk ⊗ (R(1) − Ipk))vec(Λ

(1))∥∞ = O(n−θ). (B.97)

Not that the long-run covariance Θ(1) = Λ(1) + Λ(1)⊤ + Ω(1). Then by (B.95) and (B.97),

∥ − (Ipk ⊗C(1) +C(1) ⊗ Ipk)
vec(Σ̂(1))

nθ
− vec(Θ(1))∥∞

p

≼
(log p)3+

2
r

nθ
+

(log p)3+
1
2r

√
n1−θ

.

Notice that Ipk ⊗C(1) +C(1) ⊗ Ipk is diagonal, with the diagonal entries uniformly bounded
from above and below by some absolute constants. Therefore,∥∥∥∥∥vec(Σ̂(1))

nθ
+ (Ipk ⊗C(1) +C(1) ⊗ Ipk)

−1vec(Θ(1))

∥∥∥∥∥
∞

p

≼
(log p)3+

2
r

nθ
+

(log p)3+
1
2r

√
n1−θ

Define c(1)j as the j-th diagonal entry of C(1). Observe that

(Ipk ⊗C(1) +C(1) ⊗ Ipk)
−1vec(Θ(1)) =

∫ ∞

0

eτC
(1) ⊗ eτC

(1)

dτ · vec(Θ(1))

= vec(

∫ ∞

0

eτC
(1) ·Θ(1) · eτC(1)

dτ).

Therefore, ∥∥∥∥n−θ · Σ̂(1) −
∫ ∞

0

eτC
(1) ·Θ(1) · eτC(1)

dτ

∥∥∥∥
∞

p

≼
(log p)3+

2
r

nθ
+

(log p)3+
1
2r

√
n1−θ

,

which completes the proof.

B.3.2 Technical Lemmas for Inference

Let ζj,t be an AR(1) process satisfying

ζj,t = ρzζj,t−1 + ej,t (B.98)

with a zero initial value. Therefore, ζj,t is an MI process with degree of persistence θ, thereby
satisfying

max
j∈G(k),t∈[n]

|ζj,t|
p

≼ n
θ
2 (log p)3/2. (B.99)

Further define

ψj,t =
t∑

s=1

ρt−s
z xj,s−1. (B.100)
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The instrument zj,t has the following decompositions

zj,t = ζj,t − (1− ρ∗j)ψj,t (B.101)

and
zj,t = xj,t − (1− ρz)ψj,t. (B.102)

Lemma B.6. Under the conditions in Theorem 2, for k,m ∈ {0, 1} we have

max
j∈G(k),t∈[n]

|ψj,t|
p

≼ n
k∨θ
2

+(θ∧k)(log p)3/2, (B.103)

max
j∈G(k),ℓ∈G(m)

∣∣∣∣∣
n∑

t=1

ψj,t−1xℓ,t−1

∣∣∣∣∣ p

≼ n1+ k∨θ
2

+(θ∧k)+m
2 (log p)3, (B.104)

and

sup
j∈G(k)

∣∣∣∣∣
n∑

t=1

ψj,t−1ut

∣∣∣∣∣ p

≼ n
1
2
+ k∨θ

2
+(θ∧k)(log p)2+

1
2r . (B.105)

Proof of Lemma B.6. For (B.103), by definition in (B.100),

max
j∈G(k),t∈[n]

|ψj,t| ≤ max
t∈[n]

∣∣∣∣∣
t∑

s=1

ρt−s
z

∣∣∣∣∣ max
j∈G(k),t∈[n]

|xj,t−1|

≤ nθ

|cz|
max

j∈G(k),t∈[n]
|xj,t−1|

p

≼ nθ+ k
2 (log p)3/2. (B.106)

where the last inequality applies Lemma B.1. In addition, we can reorganize the expression
of ψj,t as

ψj,t =
t∑

s=1

s−1∑
r=0

ρt−s
z ρ∗rj ej,s−1−r =

t−1∑
r=0

ρ∗rj

t∑
s=r+1

ρt−s
z ej,s−1−r =

t−1∑
r=0

ρ∗rj

(
t−r∑
d=1

ρt−r−d
z ej,d−1

)

= O(nγ(k)

) max
j∈G(k),t∈[n]

∣∣∣∣∣
t−r∑
d=1

ρt−r−d
z ej,d−1

∣∣∣∣∣ (B.107)

and thus

max
j∈G(k),t∈[n]

|ψj,t| ≤ O(nk) max
j∈G(k),t∈[n]

∣∣∣∣∣
t−r∑
d=1

ρt−r−d
z ej,d−1

∣∣∣∣∣ .
Note that {

∑t
d=1 ρ

t−d
z ej,d−1}t∈[n] is an MI process with degree of persistence equaling θ. By
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the arguments the prove Lemma B.1 we have

max
j∈G(k),t∈[n]

max
j∈G(k),t∈[n]

∣∣∣∣∣
t∑

d=1

ρt−d
z ej,d−1

∣∣∣∣∣ p

≼ Cn
θ
2 (log p)3/2.

Therefore, by (B.107)

max
j∈G(k),t∈[n]

|ψj,t|
p

≼ Cnk+ θ
2 (log p)3/2(log p)3/2. (B.108)

By (B.106) and (B.108),

max
j∈G(k),t∈[n]

|ψj,t|
p

≼
(
nθ+ k

2 (log p)3/2
)
∧
(
nk+ θ

2 (log p)3/2
)

=n
k∨θ
2

+(θ∧k)(log p)3/2,

which verifies (B.103). (B.104) follows by

max
j∈G(k),ℓ∈G(m)

∣∣∣∣∣
n∑

t=1

ψj,t−1xℓ,t−1

∣∣∣∣∣ p

≼ n max
j∈G(k),t∈[n]

|ψj,t| · max
j∈G(m),t∈[n]

|xj,t|

and the inequalities (B.103) and (B.1).
For (B.105), by definition of ψj,t in (B.100) we have the recursive formula ψj,t = ρzψj,t−1+

xj,t−1. Take G = ⌊(2c−1
α log(np))1/r⌋ as in the proof of (B.45) in Lemma B.2. We thus have

the following decomposition.

n∑
t=1

ψj,t−1ut =
G∑
t=1

ψj,t−1ut +
G−2∑
d=0

ρdz

n∑
t=G+1

utxj,t−d−1 + ρG−1
z

n∑
t=G+1

ψj,t−Gut. (B.109)

For the first term of the right-hand side, we have

max
j∈G(k)

|
G∑
t=1

ψj,t−1ut|
p

≼ G max
j∈G(k),t∈[n]

|ψj,t−1|max
t∈[n]

|ut|
p

≼ n
k∨θ
2

+(θ∧k)(log p)5/2, (B.110)

where the last inequality applies (B.103) and the sub-exponential distribution of ut. For the
second term, by Proposition B.3

max
j∈G(k)

|
G−2∑
d=0

ρdz

n∑
t=G+1

utxj,t−d−1|
p

≼ G
√
n1+k(log p)2+

1
2r . (B.111)

We then bound the third term. Following the arguments to bound “T3” in the proof of (B.45)
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in Lemma B.2 (See also the proof of Proposition B.2 in MS), by the upper bound of ψj,t

given as (B.103), we have∣∣∣∣∣ρG−1
z

n∑
t=G+1

ψj,t−Gut

∣∣∣∣∣ p

≼ n
1
2
+ k∨θ

2
+(θ∧k)(log p)2+

1
2r , (B.112)

Then (B.105) follows by (B.109), (B.110), (B.111), and (B.112). We complete the proof of
Lemma B.6.

Lemma B.7. Under the conditions in Theorem 2, we have

max
j∈G(k),t∈[n]

|zj,t|
p

≼ n
k∧θ
2 (log p)3/2, (B.113)

max
j∈G(k),ℓ∈[p]

|
n∑

t=1

zj,t−1eℓ,t|
p

≼ n+ n1− k∨θ
2

+k∧θ(log p)3/2, (B.114)

and

max
j∈G(k),ℓ∈G(m)

|
n∑

t=1

zj,t−1xℓ,t−1|
p

≼ (nθ∧k∧m + n− k∨θ
2

+k∧θ+m
2 ) · n(log p)3+

1
2r . (B.115)

Proof of Lemma B.7. For (B.7), when θ ≤ γj, by (B.101) we have

max
j∈G(k),t∈[n]

|zj,t| ≤ max
j∈G(k),t∈[n]

|ζj,t|+
c̄

nγ(k)
max

j∈G(k),t∈[n]
|ψj,t|

p

≼n
θ
2 (log p)3/2 + n

k
2
+θ−k(log p)3/2

=n
θ
2 (log p)3/2 + n

θ
2
− k−θ

2 (log p)3/2 ≤ 2n
θ
2 (log p)3/2. (B.116)

When γj < θ, by (B.102)

max
j∈G(k),t∈[n]

|zj,t| ≤ max
j∈G(k),t∈[n]

|xj,t|+
|cz|
nθ

max
j∈G(k),t∈[n]

|ψj,t|

p

≼ n
k
2 (log p)3/2 + n

θ
2
+k−θ(log p)3/2

= n
k
2 (log p)3/2 + n

k
2
− θ−k

2 (log p)3/2 ≤ 2n
θ
2 (log p)3/2. (B.117)

We then have (B.7) by combining (B.116) and (B.117).
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For (B.114), by (B.101), when k = 1

max
j∈G(1),ℓ∈[p]

|
n∑

t=1

zj,t−1eℓ,t| ≤ max
j∈G(1),ℓ∈[p]

|
n∑

t=1

ζj,t−1eℓ,t|+
c̄

n
max

j∈G(1),ℓ∈[p]
|

n∑
t=1

ψj,t−1eℓ,t|

p

≼ n+ n
1
2
+θ(log p)3, (B.118)

where in the last step the upper bound of the first term applies (B.46) bounded the cross-
product between and MI process and a stationary component, and the bound of the second
term applies (B.104) with m = 0 as eℓ,t is stationary. Similarly, we can deduce by (B.102)
that when k = 0

max
j∈G(0),ℓ∈[p]

|
n∑

t=1

zj,t−1eℓ,t|
p

≼ n+ n1− θ
2 (log p)3. (B.119)

Then (B.114) follows by (B.118) and (B.119).
For (B.115), by (B.101), when k = 0,

max
j∈G(k),ℓ∈G(m)

|
n∑

t=1

zj,t−1xℓ,t−1| ≤ max
j∈G(k),ℓ∈G(m)

|
n∑

t=1

ζj,t−1xℓ,t−1|+ c̄ max
j∈G(k),ℓ∈G(m)

|
n∑

t=1

ψj,t−1xℓ,t−1|

p

≼ n1+(θ∧m)(log p)1+
1
2r + n

1
2
+θ+m

2 (log p)3 (B.120)

where the second step applies (B.4) that bounds the cross-product of MI regressors, and
(B.104). Similarly, when k = 0 we deduce by (B.102) that

max
j∈G(k),ℓ∈G(m)

|
n∑

t=1

zj,t−1xℓ,t−1| ≤ n1+(k∧m)(log p)1+
1
2r + n1− θ

2
+k+m

2 (log p)3. (B.121)

Then (B.115) follows by (B.120) and (B.121).

Lemma B.8. Under the conditions in Theorem 2, we have

√
nθ∧k

p

≼ min
j∈H(k)

τ̂j
p

≼ max
j∈H(k)

τ̂j
p

≼
√
nθ∧k. (B.122)

Proof of Lemma B.8. When k = 1, by decomposition (B.101)

(zj,t − z̄j)
2 = (ζj,t − ζ̄j)

2 +
c∗j
n
(ζj,t − ζ̄j)(ψj,t − ψ̄j) +

c∗2j
n2

(ψj,t − ψ̄j)
2 (B.123)
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Recall that ζj,t is an MI process with degree of persistence θ. By (B.103) and (B.37), we have

max
j∈G(k)

| 1
n

n∑
t=1

(ζj,t − ζ̄j)(ψj,t − ψ̄j)|
p

≼ n
1
2
+θ+ θ

2 (log p)3 = n
3θ
2
+ 1

2 (log p)4.5.

Therefore,

max
j∈G(k)

| 1
n

n∑
t=1

c∗j
n
(ζj,t − ζ̄j)(ψj,t − ψ̄j)|

p

≼ n
3θ
2
− 1

2 (log p)4.5 = o(nθ). (B.124)

By (B.6),

max
j∈G(k)

| 1
n

n∑
t=1

c∗2j
n
(ψj,t − ψ̄j)

2|
p

≼ n2θ−1(log p)3/2 = o(nθ). (B.125)

By (B.123), (B.124), and (B.125), we have

max
j∈G(k)

| 1
n

n∑
t=1

(zj,t − z̄j)
2 − 1

n

n∑
t=1

(ζj,t − ζ̄j)
2| = op(n

θ). (B.126)

By (B.2),

nθ
p

≼ min
j∈G(k)

1

n

n∑
t=1

(ζj,t − ζ̄j)
2

p

≼ max
j∈G(k)

1

n

n∑
t=1

(ζj,t − ζ̄j)
2

p

≼ nθ, (B.127)

and thus (B.122) follows by (B.126) and (B.127).
When γ = 0, (B.122) can be verified in a parallel way utilizing the decomposition (B.102).

We complete the proof of Lemma B.8.

Qn = diag({nϕj}j∈[p]). Additionally define

r∗j,t = zj,t − x⊤−j,tφ
[j]∗, and r∗t = (r∗1,t, r

∗
2,t, . . . , r

∗
p,t)

⊤ (B.128)

as the true error term in the auxiliary regression.

Lemma B.9. Under the conditions in Theorem 2, we have

E

(
max

j∈[p],t∈[n]

∣∣∣∣∣ r∗j,t−1ut√
nΠj,j

∣∣∣∣∣
ϖ ∣∣∣∣∣{r∗t−1}t∈[n]

)
= Op

(∣∣∣∣(log p)5n

∣∣∣∣ϖ/2
)

for any fixed constant ϖ > 0.

Proof of Lemma B.9. By the decomposition (B.135),

r∗j,t = vj,t − x⊤−j,tφ
[j]∗ +O

(
1

nθ∨γj

)
ψj,t,
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where vj,t is an MI process with degree of persistence θ ∧ γj. Recall from the definition of
φ[j]∗ in Section A that φ[j]∗

ℓ is nonzero if and only if xℓ,t shares the same degree of persistence
with vj,t. Therefore, vj,t − x⊤−j,tφ

[j]∗ is a linear combination of MI processes with degree of
persistence θ ∧ γj. Therefore

max
j∈[p],t∈[n]

|vj,t − x⊤−j,tφ
[j]∗|

√
nθ∧γj

p

≼ (log p)3ϖ/2. (B.129)

Combining (B.103) and (B.129), we have

max
j∈[p],t∈[n]

|r∗j,t|√
nθ∧γj

p

≼ (log p)3ϖ/2. (B.130)

For simplicity, use Er(·) to denote E(·|{r∗t−1}t∈[n]). By the sub-exponential distribution of ut,
we have E(maxt∈[n] |ut|ϖ) = O((log p)ϖ). Therefore, the conditional mean E(maxt∈[n] |ut|ϖ|{r∗t−1}t∈[n])
is a random variable with a mean value of order O((log p)ϖ), and thus

E(max
t∈[n]

|ut|ϖ|{r∗t−1}t∈[n]) = Op((log p)
ϖ). (B.131)

Recall that Πj,j = nθ∧γj Π̃j,j, where Π̃j,j is bounded from above and below by some absolute
constants uniformly for all j ∈ [p]. Therefore, by (B.130) and (B.131), we have

Er

(
max

j∈[p],t∈[n]

∣∣∣∣∣ r∗j,tut√
nΠj,j

∣∣∣∣∣
ϖ)

≤

√√√√√n−ϖ/2 max
j∈[p],t∈[n]

∣∣∣∣∣∣ r∗j,t√
nθ∧γj Π̃j,j

∣∣∣∣∣∣
2ϖ

max
j∈[p],t∈[n]

Er |ut|2ϖ

= Op

(∣∣∣∣(log p)5n

∣∣∣∣ϖ/2
)
.

We complete the proof of Lemma B.9.

Recall that r̂j,t is the residual of the auxiliary LASSO regression (23). Define

řj,t = τ̂j r̂j,t, and řt = (ř1,t, ř2,t, . . . , řp,t)
⊤ (B.132)

as the residual standardized by the sample s.d. of the instrument, denoted as τ̂j in (22), so
that r∗j,t is a population truth of řj,t. Finally, define

Πn =
1

n

n∑
t=1

r∗t−1r
∗⊤
t−1, Π̂n =

1

n

n∑
t=1

řt−1ř
⊤
t−1.
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Lemma B.10. Under the conditions in Theorem 2, there exists a nonrandom matrix Π such
that ∥∥Q−1/2

n (Π− Πn)Q
−1/2
n

∥∥
∞

p

≼
(log p)3√
nδmin

, (B.133)

and ∥∥∥Q−1/2
n (Π− Π̂n)Q

−1/2
n

∥∥∥
∞

p

≼
s2(log p)11+

1
2r

√
nδmin

, (B.134)

where δmin = θ ∧ (1− θ).

Proof of Lemma B.10. We first prove (B.133). By decomposition (B.101) and decompo-
sition (B.101), we can summarize that

zj,t = vj,t +O

(
1

nθ∨γj

)
ψj,t (B.135)

where
vj,t = ζj,t1{θ < γj}+ xj,t1{θ > γj} (B.136)

is an AR(1) process with innovation ej,t and AR coefficient either ρz1{θ < γj}+ρj1{θ > γj}.
Recall that ϕj = θ ∧ γj. Therefore, vj,t is MI or stationary with degree of persistence
ϕj = θ ∧ γj. Define

w∗
j,t = vj,t − x⊤−j,tφ

[j]∗

with zj,t replaced by vj,t in the definition of r∗j,t in (B.128). The proof will consist of the
following steps:

(I) Prove

max
j,ℓ∈[p]

∣∣∣∣∣n−1

n∑
t=1

r∗j,t−1r
∗
ℓ,t−1√

nϕj+ϕℓ

− n−1

n∑
t=1

w∗
j,t−1w

∗
ℓ,t−1√

nϕj+ϕℓ

∣∣∣∣∣ p

≼
(log p)3√
nδmin

.

(II) Show that there exists a Π = (Πj,ℓ) such that

max
j,ℓ∈[p]

∣∣∣∣∣n−1

n∑
t=1

w∗
j,t−1w

∗
ℓ,t−1√

nϕj+ϕℓ

− Πj,ℓ

∣∣∣∣∣ p

≼
(log p)3+

2
r

√
nδmin

.

Then (B.133) follows by the results of (I) and (II), and the triangular inequality.
Proof of (I). Recall that ϕj = θ ∧ γj = θ for all j ∈ G(1) and ϕj = 0 for j ∈ G(0). By

the definition of φ[j]∗ in Section A, we have φ[j]∗
ℓ ̸= 0 if and only if ϕℓ = ϕj. Therefore,

w∗
j,t = vj,t − x⊤−j,tφ

[j]∗ is a linear combination of MI variables with degree of persistence ϕj.
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Define ϕ(m) := m∧ θ. By the upper bound of L1-norm for φ[j]∗ in Assumption 6, we have

sup
j∈G(m),t∈[n]

|w∗
j,t|

p

≼
√
nϕ(m)(log p)3/2,

following (B.1) for the upper bound of MI regressors, which implies

sup
j∈[p],t∈[n]

|w∗
j,t|√
nϕj

≤ sup
m∈[M ]

sup
j∈G(m),t∈[n]

|w∗
j,t|√
nϕ(m)

p

≼ (log p)3/2. (B.137)

In addition,

sup
j∈[p],t∈[n]

|r∗j,t − w∗
j,t|√

nϕj

= O

(
sup

j∈[p],t∈[n]

|ψj,t|
nθ∨γj

√
nϕj

)
(B.138)

p

≼ sup
j∈[p],t∈[n]

n
θ∨γj

2
+ϕj(log p)3/2

nθ∨γj
√
nϕj

= sup
j∈[p],t∈[n]

(log p)3/2√
n(θ∨γj)−(θ∧γj)

≤
√

(log p)3

nδmin
,

where the first line applies (B.135), and the second line applies (B.103). Then by (B.137)
and (B.138), we have

sup
j∈[p],t∈[n]

|r∗j,t|√
nϕj

≤ sup
j∈[p],t∈[n]

|w∗
j,t|√
nϕj

+ sup
j∈[p],t∈[n]

|r∗j,t − w∗
j,t|√

nϕj

p

≼ (log p)3/2 (B.139)

by (B.137) and (B.138). Therefore,

max
j,ℓ∈[p]

∣∣∣∣∣n−1

n∑
t=1

r∗j,t−1r
∗
ℓ,t−1√

nϕj+ϕℓ

− n−1

n∑
t=1

w∗
j,t−1w

∗
ℓ,t−1√

nϕj+ϕℓ

∣∣∣∣∣
≤ max

j,ℓ∈[p]

∣∣∣∣∣n−1

n∑
t=1

(r∗j,t−1 − w∗
j,t−1)r

∗
ℓ,t−1√

nϕj+ϕℓ

∣∣∣∣∣+ max
j,ℓ∈[p]

∣∣∣∣∣n−1

n∑
t=1

w∗
j,t−1(r

∗
ℓ,t−1 − w∗

ℓ,t−1)√
nϕj+ϕℓ

∣∣∣∣∣
≤ sup

j∈[p],t∈[n]

|r∗j,t − w∗
j,t|√

nϕj

sup
ℓ∈[p],t∈[n]

|r∗ℓ,t|√
nϕℓ

+ sup
j∈[p],t∈[n]

|r∗j,t − w∗
j,t|√

nϕj

sup
ℓ∈[p],t∈[n]

|w∗
j,t|√
nϕj

p

≼
(log p)3√
nδmin

,

where the last inequality applies (B.137), (B.138), and (B.139). We complete the proof of
(I).

Proof of (II). Recall that w∗
j,t = vj,t − x⊤−j,tφ

[j]∗ is a linear combination of MI variables
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with degree of persistence ϕj. Therefore, when ϕℓ ̸= ϕj,by (B.4)

max
j,ℓ∈[p]

|n−1

n∑
t=1

w∗
j,t−1w

∗
ℓ,t−1√

nϕj+ϕℓ

| ≤ max
j,ℓ∈[p]

nϕj∧ϕℓ(log p)1+
1
2r

√
nϕj+ϕℓ

=
(log p)1+

1
2r

√
nδmin

, (B.140)

and thus (II) follows by taking Πj,ℓ = 0. When ϕj = ϕℓ, recall that ϕj = θ ∧ γj. Therefore,

w∗
j,t−1w

∗
ℓ,t−1 = vj,t−1vℓ,t−1 − vj,t−1x

⊤
−ℓ,tφ

[ℓ]∗ − vℓ,t−1x
⊤
−j,tφ

[j]∗ + φ[ℓ]∗⊤x−ℓ,t−1x
⊤
−j,tφ

[j]∗.

Without loss of generality, suppose j, ℓ ∈ G(k) so that γj = γℓ = k. By (B.87) and the
definition of φ[j]∗ in Section A, we have

max
j,ℓ∈G(k)

∣∣∣∣∣ 1n
n∑

t=1

w∗
jt−1w

∗
ℓ,t−1√

nϕj+ϕℓ

− Π̃j,ℓ

∣∣∣∣∣ p

≼
(log p)3+

2
r

nϕ(k)
+

(log p)3+
1
2r

√
n1−ϕ(k)

≤ (log p)3+
2
r

√
nδmin

, (B.141)

where Π̃j,ℓ = Σ
(k)
j,ℓ − Σ

(k)
j,−ℓ(Σ

(k)
−ℓ,−ℓ)

−1Σ
(k)
−ℓ,ℓ − Σ

(k)
ℓ,−j(Σ

(k)
−j,−j)

−1Σ
(k)
−j,j

+ Σ
(k)⊤
−ℓ,ℓ (Σ

(k)
−ℓ,−ℓ)

−1Σ
(k)
−ℓ,−j(Σ

(k)
−j,−j)

−1Σ
(k)
−j,j.

When j = ℓ, Π̃j,ℓ is simplified as

Π̃j,j = Σ
(k)
j,j − Σ

(k)
j,−j(Σ

(k)
−j,−j)

−1Σ
(k)
−j,j. (B.142)

Then (II) is implied by (B.140) with Πj,ℓ = 0, and taking the maximum over k ∈ [K] of
(B.141) with

Πj,ℓ = nϕj+ϕℓΠ̃j,ℓ. (B.143)

We complete the proof of (B.133).
We next prove (B.133). By the triangular inequality if suffices to show

∥∥∥Q−1/2
n (Πn − Π̂n)Q

−1/2
n

∥∥∥
∞

p

≼
s2(log p)11+

1
2r

√
nδmin

. (B.144)

Define φ̌[j] = τ̂jφ̂
[j], where τ̂j is the sample s.d. of the IV in (22), and φ̂[j] is the auxiliary
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LASSO estimator in (23). Then

max
j∈[p],t∈[n]

|r∗j,t − ř∗j,t|√
nϕj

= max
j∈[p],t∈[n]

|x⊤−j,t(φ̌
[j] − φ[j]∗)|

√
nθ∧γj

≤ max
j∈[p],t∈[n]

∥D−1
−jx−j,t∥∞ · τ̂j∥D−j(φ̂

[j] − φ[j]∗)∥1√
nθ∧γj

p

≼(log p)2 max
k∈[K]

max
j∈G(k),t∈[n]

τ̂j∥D−j(φ̂
[j] − φ[j]∗)∥1√
nθ∧γj

p

≼
s2(log p)

19
2
+ 1

2r

√
nδmin

, (B.145)

where the third row applies (B.1) and Proposition B.2, and the last inequality applies Lemma
B.10 and Proposition B.4. Therefore,

max
j,ℓ∈[p]

∣∣∣∣∣n−1

n∑
t=1

r∗j,t−1r
∗
ℓ,t−1√

nϕj+ϕℓ

− n−1

n∑
t=1

řj,t−1řℓ,t−1√
nϕj+ϕℓ

∣∣∣∣∣
≤ max

j,ℓ∈[p]

∣∣∣∣∣n−1

n∑
t=1

2(r∗j,t−1 − řj,t−1)r
∗
ℓ,t−1√

nϕj+ϕℓ

∣∣∣∣∣+ max
j,ℓ∈[p]

∣∣∣∣∣n−1

n∑
t=1

(r∗j,t−1 − řj,t−1)(r
∗
ℓ,t−1 − řℓ,t−1)√

nϕj+ϕℓ

∣∣∣∣∣
≤ sup

j∈[p],t∈[n]

|r∗j,t−1 − řj,t−1|√
nϕj

sup
ℓ∈[p],t∈[n]

|r∗ℓ,t|√
nϕℓ

+

(
sup

j∈[p],t∈[n]

|r∗j,t−1 − řj,t−1|√
nϕj

)2

p

≼
s2(log p)11+

1
2r

√
nδmin

,

where the last inequality applies (B.139) and (B.145). We complete the proof of (B.144) and
thus (B.134) is verified. We end the proof of Lemma B.10.

Define
DΠ = diag(Π), D̂Π,n = diag(Π̂n)

Lemma B.11. Under the conditions in Theorem 2, we have

∥∥∥Q1/2
n (D̂

−1/2
Π,n −D

−1/2
Π )

∥∥∥
∞

p

≼
s2(log p)11+

1
2r

√
nδmin

, (B.146)

where δmin = θ ∧ (1− θ).
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Proof of Lemma 1. Note that

∥∥∥Q1/2
n (D̂

−1/2
Π,n −D

−1/2
Π )

∥∥∥
∞

= max
j∈[p]

√
nϕj |n−1

∑n
t=1 ř

2
j,t−1 − Πj,j|(√

n−1
∑n

t=1 ř
2
j,t−1 +

√
Πj,j

)√
n−1

∑n
t=1 ř

2
j,t−1Πj,j

≤ max
j∈[p]

∣∣∣∣n−1
∑n

t=1

ř2j,t−1

nϕj
− Π̃j,j

∣∣∣∣(√
n−1

∑n
t=1

ř2j,t−1

nϕj
+

√
Π̃j,j

)√
n−1

∑n
t=1

ř2j,t−1

nϕj
Π̃j,j

≤

∥∥∥Q−1/2
n (Π− Π̂n)Q

−1/2
n

∥∥∥
∞

minj∈[p]

(√
n−1

∑n
t=1

ř2j,t−1

nϕj
+

√
Π̃j,j

)√
n−1

∑n
t=1

ř2j,t−1

nϕj
Π̃j,j

.

By (B.141), we have

min
j∈[p]

n−1

n∑
t=1

ř2j,t−1

nϕj
≥ min

j∈[p]
Π̃j,j −max

j∈[p]

∣∣∣∣∣n−1

n∑
t=1

ř2j,t−1

nϕj
− Π̃j,j

∣∣∣∣∣ ≥ 0.5min
j∈[p]

Π̃j,j

with a sufficiently large n. Therefore, by (B.134)

∥∥∥Q1/2
n (D̂

−1/2
Π,n −D

−1/2
Π )

∥∥∥
∞

≤ s2(log p)11+
1
2r

√
nδmin

/

(
0.5(min

j∈[p]
Π̃j,j)

1.5

)
= O

(
s2(log p)11+

1
2r

√
nδmin

)
.

We complete the proof of Lemma (B.11).

Define

V = D
−1/2
Π ΠD

−1/2
Π , Vn = D

−1/2
Π ΠnD

−1/2
Π , Wn = D̂

−1/2
Π,n Π̂nD̂

−1/2
Π,n .

Lemma B.12. Under the conditions in Theorem 2, we have

∥V − Vn∥∞
p

≼
(log p)3√
nδmin

(B.147)

∥Vn −Wn∥∞
p

≼
s2(log p)11+

1
2r

√
nδmin

(B.148)

Proof of Lemma B.12. Note that each diagonal entry in DΠ is Πj,j = nϕj Π̃j,j according to
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(B.143), where Π̃j,j defined in (B.142) has an O(1) order.

∥D−1
Π Qn∥∞ ≤ max

j∈[p]

nϕj

nϕj Π̃j,j

= O(1). (B.149)

Then
∥V − Vn∥∞ ≤ ∥Q−1/2

n (Π− Πn)Q
−1/2
n ∥∞ · ∥D−1/2

Π Q1/2
n ∥∞

p

≼
(log p)3√
nδmin

,

where the last inequality applies (B.133).
For (B.148), note that by Πj,ℓ =

√
nϕj+ϕℓΠ̃j,ℓ according to (B.143), we have

∥Q−1/2
n ΠQ−1/2

n ∥∞ = O(1). (B.150)

By (B.134) we further have

∥Q−1/2
n Π̂nQ

−1/2
n ∥∞

p

≼ 1. (B.151)

By (B.149) and (B.11), the triangular inequality yields

∥D̂−1
Π,nQn∥∞

p

≼ 1. (B.152)

We thus have

∥Vn −Wn∥∞ =∥D−1/2
Π ΠD

−1/2
Π − D̂

−1/2
Π,n Π̂nD̂

−1/2
Π,n ∥∞

=∥(D−1/2
Π − D̂

−1/2
Π,n )Q1/2

n ∥∞∥Q−1/2
n ΠQ−1/2

n Q1/2
n D

−1/2
Π ∥∞

+ ∥D̂−1/2
Π,n Q1/2

n Q−1/2
n Π̂nQ

−1/2
n ∥∞∥Q1/2

n (D̂
−1/2
Π,n −D

−1/2
Π )∥∞+

+ ∥D̂−1/2
Π,n Q1/2

n ∥2∞∥Q−1/2
n (Π̂n − Π)Q−1/2

n ∥∞
=O(1)∥(D−1/2

Π − D̂
−1/2
Π,n )Q1/2

n ∥∞ +O(1)∥Q−1/2
n (Π̂n − Π)Q−1/2

n ∥∞
p

≼
s2(log p)11+

1
2r

√
nδmin

,

where the third row applies (B.149), (B.150), (B.151), and (B.152), and the last inequality
applies (B.134) and (B.146). We complete the proof of Lemma B.12.
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